List of symbols

\bar{R}_i = Estimated value of resistance,

c = Speed of light,

$\cos \phi$ = Power factor,

f_e^* = External command frequency,

f_R = Rated Value of line frequency,

f_R and f_e are the rated and line frequency in Hertz,

l_0 = No load current,

I_1 = Stator current (A),

I_{im} = real component of rms stator current,

I_2 = Rotor current (A),

I_2' = Rotor current referred to stator (A),

I_m = Magnetizing branch current (A),

$\text{Im}(Z)$ = Imagery part of Z,

I_p = peak value of current in ampere,

I_n = Rated Value of stator current,

I_s = rms current,

L_2 = Rotor leakage inductance referred to stator (H),

L_c = Crucial length of cable,

L_s = Stator leakage inductance (H),

N = Rotor speed in rps

P = Ohmic loss in watts,

P_0 = No load input power, P_0 and l_0 is no load input and current.

P_{in} = Power input to the motor (W),

P_{out} = Power output of the motor (W),

P_R = Rated Value of power input.
\(\text{Re}(Z) = \text{Real part of } Z, \)

\(R_{fe} = \text{Magnetizing resistance (} \Omega \text{)}, \)

\(R_{fe} = \text{Resistance corresponds to core loss}, \)

\(R_l = \text{Load resistance}, \)

\(R_r = \text{Rotor resistance}, \)

\(R_s, R_2 = \text{Rotor resistance (} \Omega \text{)}, \)

\(R_s = \text{Stator resistance (} \Omega \text{)}, \)

\(R_{st} = \text{Stator winding resistance per phase}, \)

\(s = \text{Slip}, \)

\(S_R = \text{Rated Value of slip}, \)

\(t = \text{Temperature}, \)

\(T_g = \text{Gross torque developed by the motor}. \)

\(T_g = \text{Gross torque}, \)

\(T_R = \text{Rated Value of torque}. \)

\(t_{rise} = \text{Rise time of inverter's voltage pulses}, \)

\(U_{AV} = \text{Energy stored in magnetic field in Joules}, \)

\(v = \text{Wave velocity}, \)

\(V_0 = \text{No load voltage}, \)

\(V_{IR} = \text{Base (rated) rms phase voltage at base frequency}, \)

\(V_s = \text{Supply voltage (V)}, \)

\(X_m = \text{Magnetising branch reactance}, \)

\(X_m = \text{Magnetizing reactance (} \Omega \text{)}, \)

\(X_r = \text{Rotor leakage reactance (} \Omega \text{)}, \)

\(X_r = \text{Rotor reactance}, \)

\(X_s = \text{Stator leakage reactance (} \Omega \text{)}, \)

\(X_s = \text{Stator winding leakage reactance per phase}, \)

\(Y_t = \text{Actual (or observed) value of the random variable in period } t, \)

\(Y_t^* = \text{Estimated value of the random variable in period } t, \)
$Z = \text{Total impedance of motor circuit under blocked rotor condition,}$

$Z_0 = \text{Magnetizing Impedance (Ω),}$

$Z_{eq} = \text{Equivalent Impedance of the motor (Ω),}$

$Z_r = \text{Rotor Impedance (Ω),}$

$\varepsilon_0 = \text{Permittivity of free space,}$

$\varepsilon_r = \text{Relative permittivity of cable insulation material,}$

$E_t = \text{Random component (or noise) in period } t,$

$\eta_R = \text{Rated Value of efficiency,}$

$\omega = \text{Speed (radian per second),}$

$\rho = \text{Charge density,}$