<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Research Envisaged</td>
<td>09</td>
</tr>
<tr>
<td>1.2 Proposed Plan of work</td>
<td>09</td>
</tr>
<tr>
<td>1.3 References</td>
<td>11</td>
</tr>
<tr>
<td>2. Review of Literature</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Factors affecting pulmonary drug delivery</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Mechanisms of particle deposition in airways</td>
<td>16</td>
</tr>
<tr>
<td>2.1.2 Physiological factors affecting particle deposition in airways</td>
<td></td>
</tr>
<tr>
<td>2.1.2.1 Lung Morphology</td>
<td>17</td>
</tr>
<tr>
<td>2.1.3 Pharmaceutical factors affecting aerosol deposition</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Fate of particles in the airways</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Mucus barrier</td>
<td>21</td>
</tr>
<tr>
<td>2.2.2 Mucociliary Clearance</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3 Alveolar Clearance</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Factors affecting the absorption and metabolism of drugs in the airways</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Area</td>
<td>22</td>
</tr>
<tr>
<td>2.3.2 Absorption Barrier Thickness</td>
<td>23</td>
</tr>
<tr>
<td>2.3.3 Blood Supply</td>
<td>23</td>
</tr>
<tr>
<td>2.3.4 Membrane permeability</td>
<td>23</td>
</tr>
<tr>
<td>2.3.5 Enzymatic activity</td>
<td>24</td>
</tr>
<tr>
<td>2.4 Merits and Demerits of pulmonary drug delivery</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Locally acting drugs</td>
<td>25</td>
</tr>
</tbody>
</table>
2.4.2 Merits and demerits of systemically acting drugs

2.5 Lung cancer

2.6 Drug Profile

2.6.1 Etoposide

2.6.1.1 Physico Chemical aspects

2.6.1.2 Pharmacological aspects

2.6.1.3 Dose and Route of administration

2.6.1.4 Marketed preparation

2.6.2 Docetaxel

2.6.2.1 Physico chemical aspects

2.6.2.2 Pharmacology

2.6.2.3 Dose and Route of administration

2.7 Liposomes

2.7.1 Composition of liposomes

2.7.1.1 Phospholipids

2.7.1.2 Sterols

2.7.1.3 Non structural components

2.7.2 Types of liposomes

2.7.3 Methods of preparation of liposomes

2.7.3.1 Passive loading techniques

2.7.3.1.1 Thin film hydration using hand shaking (MLVs) and non shaking Methods

2.7.4 Remote (Active) loading
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 Characterization of liposomes</td>
<td>52</td>
</tr>
<tr>
<td>2.8.1 Vesicle shape and lamellarity</td>
<td>52</td>
</tr>
<tr>
<td>2.8.2 Vesicle size and distribution</td>
<td>53</td>
</tr>
<tr>
<td>2.8.2.1 Microscopic Techniques</td>
<td>53</td>
</tr>
<tr>
<td>2.8.3 Surface charge</td>
<td>55</td>
</tr>
<tr>
<td>2.8.4 Encapsulation Efficiency</td>
<td>55</td>
</tr>
<tr>
<td>2.8.5 Trapped Volume</td>
<td>56</td>
</tr>
<tr>
<td>2.8.6 Phase Response and transitional behaviour</td>
<td>56</td>
</tr>
<tr>
<td>2.8.7 Stability of liposomes</td>
<td>56</td>
</tr>
<tr>
<td>2.9 Drug Delivery to tumours</td>
<td>58</td>
</tr>
<tr>
<td>2.9.1 Development of tumour</td>
<td>58</td>
</tr>
<tr>
<td>2.9.2 Molecular targets for tumour therapy</td>
<td>59</td>
</tr>
<tr>
<td>2.9.2.1 Targeted drug delivery via folate receptor</td>
<td>61</td>
</tr>
<tr>
<td>2.9.2.2 Hyaluronic acid as a ligand</td>
<td>61</td>
</tr>
<tr>
<td>2.10 Dry Powder Inhalers</td>
<td>64</td>
</tr>
<tr>
<td>2.10.1 Powder and Aerosol physico chemical characterization</td>
<td>66</td>
</tr>
<tr>
<td>2.10.1.1 Moisture content and Hygroscopicity</td>
<td>67</td>
</tr>
<tr>
<td>2.10.1.2 Particle size</td>
<td>67</td>
</tr>
<tr>
<td>2.10.1.3 Aerodynamic Diameter and Dynamic shape factor</td>
<td>68</td>
</tr>
<tr>
<td>2.10.1.4 Fine Particle Fraction</td>
<td>69</td>
</tr>
<tr>
<td>2.10.1.5 Polydispersity</td>
<td>69</td>
</tr>
<tr>
<td>2.11 Formulation of DPIs</td>
<td>72</td>
</tr>
<tr>
<td>2.11.1 Excipients</td>
<td>72</td>
</tr>
</tbody>
</table>
3. Analytical Methods

3.1 Materials and Methods

3.2 Chemical Analysis

3.2.1 Estimation of Etoposide (ETP) by UV spectrophotometric method

3.2.1.1 Estimation of Etoposide (ETP) by HPLC

3.2.1.2 Estimation of Etoposide in non grafted and grafted liposomes

3.2.1.3 Estimation of Etoposide in diffusion medium

3.2.1.4 Estimation of Etoposide in biological samples (Cell lysates)

3.2.2 Estimation of Docetaxel (DOC)

3.2.2.1 Estimation of Docetaxel in solution by UV spectrophotometry

3.2.2.1.1 Estimation of Docetaxel by HPLC

3.2.3 Estimation of Docetaxel in non grafted and grafted liposomes

3.2.3.1 Estimation of DOC in diffusion medium

3.2.3.2 Estimation of DOC in biological samples (Cell lysates)

3.3 Determination of protein in cell lysates by BCA method

3.4 Spectrophotometric determination of Hyaluronic acid (HA)

3.5 Physical Characterization

3.5.1 Determination of particle size and Polydispersity

3.5.2 Determination of zeta potential

3.5.3 Morphological characterization
4. Preparation and Optimization of Liposomes

4.1 Materials and methods

4.2 Preparation of liposomes of Etoposide (ETPLIP) and Docetaxel (DOCLIP)

4.2.1 Preparation of ETP liposomes by TFH method

4.2.2 Preparation of DOC liposomes by TFH method

4.2.3 Preparation of 6-coumarin loaded liposomes by TFH method

4.3 Optimization of liposomal formulation using 2^3 factorial design

4.3.1 Optimization of formulation components for drug (ETP/DOC) loaded liposomes

4.3.1.1 Contour plots

4.3.1.2 Check point Analysis

4.4 Particle size reduction and separation of unentrapped drug

4.5 Characterization of liposomes

4.5.1 Particle Size Measurement

4.5.2 Zeta potential Determination

4.5.3 Percentage Drug Entrapment

4.6 Discussion

4.7 References
5. Preparation and Optimization of ligand (Hyaluronic acid-HA) grafted liposomes

5.1 Materials and methods

5.1.1 Preparation and optimization of HA grafted Etoposide liposomes (HAETPLIP) and Docetaxel liposomes

5.1.2 Estimation and optimization of concentration of coupling agent (EDC)

5.1.3 Spectrophotometric determination of HA

5.1.4 Fourier Transform Infra red spectroscopy

5.1.5 Preparation and optimization of HA grafted coumarin loaded liposomes

5.2 Discussion

5.3 Conclusion

5.4 References

6. Characterization of drug loaded (HA grafted and non grafted) liposomes

6.1 Equipments

6.2 Physical Characterization

6.2.1 Particle Size Measurement

6.2.2 Zeta potential Determination

6.2.3 Percentage Drug Entrapment

6.3 Characterization of 6 coumarin loaded liposomes

6.4 Drug Excipient Interaction by DSC

6.5 In vitro drug release studies for non grafted and HA grafted liposomes

6.6 Discussion

6.7 References
7. Preparation and optimization of Dry Powder Inhalers (DPIs)

7 of HA grafted liposomes

7.1 Materials and methods

7.2 Freeze Drying or lyophilization of HA grafted Etoposide liposomes

7.3 Freeze Drying or lyophilization of HA grafted Docetaxel liposomes

7.4 Characterization of liposomal DPI

7.4.1 Angle of repose

7.4.2 Compressibility Index

7.4.3 Tapped Density

7.4.4 Residual Moisture Content

7.4.5 Particle Size Determination

7.5 Characterization of aerosol performance

7.6 Surface Morphology assessment of DPIs

7.7 In vitro drug release studies

7.8 Discussion

7.9 References

8. Stability studies of DPIs of HA grafted liposomal Etoposide and Docetaxel

8.1 Methodology

8.2 Discussion

8.3 References

9. Cell Line studies

9.1 Materials and methods

9.2 Methodology
9.2.1 In vitro cell uptake studies
9.2.1.1 Preparation of 6-coumarin loaded liposomes
9.2.1.2 Cell Uptake studies
9.2.2 In vitro cytotoxicity studies by MTT assay
9.2.3 Pharmacokinetic (Intracellular Drug Concentration) Assessment
9.2.3.1 Effect of temperature and time of in vitro cell uptake
9.2.4 Cell Cycle Analysis by Flow Cytometry
9.3 Discussion
9.4 References

10. Summary and Conclusion

Summary
Conclusion

List of Papers published/presented