TABLE OF CONTENT

Section I: Introduction

1. Introduction
 1.1. Diabetes Mellitus
 1.1.1. Diabetes: A Local and Global Epidemic
 1.1.2. Definition
 1.2. Oral Antidiabetic Agents
 1.3. Pharmaceutical Dosage Form Development
 1.3.1. Commercial Compulsions
 1.3.2. Technological Advances
 1.3.3. Terminology
 1.3.4. Rationale of sustained/controlled drug delivery
 1.3.5. Most Preferred Route of Administration - Oral (Tablets)
 1.3.6. Pharmacokinetic/Pharmacodynamic basis of controlled
 /sustained drug delivery
 1.3.6.1. Biological Factors Influencing Oral SR Dosage Form Design
 1.3.6.1.1. Biological Half-life
 1.3.6.1.2. Absorption
 1.3.6.1.3. Metabolism
 1.3.6.2. Physicochemical Factors Influencing Oral SR Dosage Form
 Design
 1.3.6.2.1. Dose Size
 1.3.6.2.2. Aqueous Solubility, Ionization and pKa
 1.3.6.2.3. Partition Coefficient
 1.3.6.2.4. Stability
 1.3.7. Pros And Cons of Controlled Release Dosage Forms
 1.3.8. Classification of Controlled Release Dosage Forms
 1.3.9. Matrix Systems - First Choice of Manufacturer
 1.3.10. Direct Compression - Scientific & Economic Appeal
 1.3.10.1. Advantages of Direct Compression
 1.3.10.2. Limitations of Direct Compression
 1.4. Aims and Objectives
 1.5. References

Section II: Polymers & Excipients

2. Polymers & Excipients
 2.1. General Considerations for Direct Compression Excipients-
 Fillers-Binders
 2.2. Spray-Dried Lactose
 2.2.1. Introduction
 2.2.2. Manufacturing
 2.2.3. Functional Properties
 2.2.4. Pharmaceutical Application
 2.3. Pregelatinized Starch
 2.3.1. Introduction
 2.3.2. Manufacturing
2.3.3. Multi-Functionality
2.3.3.1. Flow-Aid
2.3.3.2. Self-Lubricant
2.3.3.3. Wet Granulation
2.3.3.4. Direct Compaction
2.3.3.5. HPMC Matrices with Starch
2.3.3.6. Low Dose Medicines
2.3.3.7. Moisture of Sensitive Actives
2.3.3.8. Super-Disintegrants
2.3.4. Applications

2.4. Microcrystalline cellulose (MCC)
2.4.1. Introduction
2.4.2. Manufacturing
2.4.3. Properties and Functionality
2.4.4. Applications

2.5. Sodium Alginate
2.5.1. Introduction
2.5.2. Manufacturing / Processing
2.5.3. Chemistry
2.5.4. Functionality and Rheology

2.6. Carrageenans
2.6.1. Introduction
2.6.2. Manufacturing
2.6.3. Functionality and Rheology
2.6.3.1. Factors influencing gelling
2.6.4. Pharmaceutical Applications

2.7. Carbopol
2.7.1. Introduction
2.7.1.1. Nomenclature:
2.7.1.2. Chemistry
2.7.2. Manufacturing:
2.7.3. Applications
2.7.4. Polymer swelling & Performance Mechanism

2.8. Guar Gum
2.8.1. Introduction
2.8.2. Structural Formula
2.8.3. Manufacturing
2.8.4. Physicochemical Properties
2.8.5. Pharmaceutical Applications

2.9. Xanthan Gum
2.9.1. Introduction
2.9.2. Xanthan Structural Unit
2.9.3. Functionality
2.9.4. Physicochemical Properties of Xanthan
2.9.5. Pharmaceutical Applications

2.10. HPMC / Hypromellose
2.10.1. Introduction
2.10.2. Nomenclature for Methocel Products
2.10.3. Polymer Structure and manufacturing
2.10.4. Polymer Properties
Section II Experimental Work

4. Experimental Work 105

4.1. Materials 105
4.1.1. Drugs and Formulations 105
4.1.2. Polymers and excipients 105
4.1.3. Chemicals and reagents 106
4.1.4. Equipments/Instruments 106

4.2. Analytical Method Development 106
4.2.1. Estimation of Glipizide (Spectroscopic Method) 107
4.2.2. Estimation of Nateglinide (Spectroscopic Method) 107
4.2.3. Estimation of Glipizide (HPLC Method) 107
4.2.3.1. Equipment and Chromatographic Conditions 107
4.2.3.2. Preparation of Standard Solutions 108
4.2.3.3. Optimization of Chromatographic Separation Conditions 108
4.2.3.4. Estimation of Glipizide from Rabbit Plasma 109
4.2.3.5. Validation of Proposed Method 110
4.2.3.5.1. Calibration Curve (Linearity) 110
4.2.3.5.2. Accuracy and Precision 110
4.2.3.5.3. Sensitivity 111
4.2.3.5.4. Selectivity 111
4.2.3.5.5. Stability 111
4.2.3.5.6. Extraction Efficiency 111
4.2.3.6. Pharmacokinetic Analysis of Glipizide from Rabbits 112
4.2.4. Estimation of Nateglinide (HPLC Method) 113
4.2.4.1. Equipment and Chromatographic Conditions 113
4.2.4.2. Preparation of Standard Solutions 113
4.2.4.3. Optimization of Chromatographic Separation Conditions 114
4.2.4.4. Estimation of Nateglinide from Rabbit Plasma 114
4.2.4.5. Validation of Proposed Method 114
4.2.4.6. Pharmacokinetic Analysis of Nateglinide from Rabbits 114
4.3. Experimental Work 115
4.3.1. Drug-Excipient Interaction Studies 115
4.3.2. Preparation & Characterization of Physical Mixture 115
4.3.3. Preparation & Characterization of Matrix Tablets 116
4.3.4. Glipizide Matrices 116
4.3.4.1. HPMC-MCC-Starch Matrices 118
4.3.4.1.1. 3^2 Full Factorial Experimental Design & Response Surface 118
4.3.4.2. MCC-Alginate & MCC-Glyceryl Behenate Matrices 119
4.3.4.3. EC-HPMC, Guar Gum & Xanthan Gum Matrices 120
4.3.4.4. Carbopol Matrices 121
4.3.4.5. Carrageenan Matrices 122
4.3.4.6. Eudragit Matrices 123
4.3.4.7. Sodium Alginate Matrices 123
4.3.5. Nateglinide Matrices 124
4.3.5.1. HPMC-MCC-Starch Matrices 124
4.3.5.2. Ethyl Cellulose & Carbopol Matrices 125
4.3.5.3. Xanthan Gum Matrices 125
4.3.5.4. Alginate-Chitosan & Eudragit-HPMC Matrices 126
4.4. In Vitro Study 126
4.4.1. Assay of Glipizide Content of Tablet 126
4.4.2. Drug Release Studies 127
4.4.3. Curve Fitting and Release Kinetics 128
4.4.4. Swelling Study 129
4.4.5. Scanning Electron Microscopy (SEM) 130
4.4.6. Stability Study 130
4.5. In Vivo Study 131
4.5.1. Drug Absorption Study in Rabbits 131
4.5.1.1. Animal Housing and Handling 131
4.5.1.2. IVIVC Development using Slow, Medium, & Fast Release Rate Formulations of HPMC-MCC Matrix 131
4.5.1.3. Establishment of IVIVC for Glytop® 2.5 SR, M-25, M-75, M-120, Natelide® 60 (Immediate Release Tablet), J-11, and J-21 132
4.5.2. Pharmacokinetic Analysis 132
4.5.3. Establishment of In Vitro-In Vivo Correlation (IVIVC) 133
4.5.3.1. Internal Validation of IVIVC 133
4.6. References 134
Section III Results & Discussion

5. Results & Discussion

5.1. Characterization of Physical Mixtures & Matrix Tablets

5.1.1. Drug-Excipient Interaction Studies

5.1.2. Characterization of Physical Mixture

5.1.3. Characterization of Matrix Tablets

5.2. Analytical Method Development

5.2.1. Estimation of Glipizide (Spectroscopic Method)

5.2.2. Estimation of Nateglinide (Spectroscopic Method)

5.2.3. Estimation of Glipizide (HPLC Method)

5.2.3.1. Optimization of Chromatographic Conditions

5.2.3.1.1. Effect of Mobile Phase pH

5.2.3.1.2. Effect of Mobile Phase Composition

5.2.3.1.3. Effect of Mobile Phase flow rate

5.2.3.2. Proposed Chromatographic Method

5.2.3.3. Validation of the Proposed Method

5.2.3.3.1. Calibration Curve (Linearity)

5.2.3.3.2. Accuracy and Precision

5.2.3.3.3. Sensitivity

5.2.3.3.4. Selectivity

5.2.3.3.5. Stability

5.2.3.3.6. Extraction efficiency

5.2.3.3.4. Pharmacokinetic Analysis of Glipizide from Rabbits

5.2.4. Estimation of Nateglinide (HPLC Method)

5.2.4.1. Optimization of Chromatographic Conditions

5.2.4.1.1. Effect of Mobile Phase pH

5.2.4.1.2. Effect of Mobile Phase Composition

5.2.4.1.3. Effect of Mobile Phase Flow Rate

5.2.4.2. Proposed Chromatographic Method

5.2.4.3. Validation of the Proposed Method

5.2.4.3.1. Calibration Curve (Linearity)

5.2.4.3.2. Accuracy and Precision

5.2.4.3.3. Sensitivity

5.2.4.3.4. Specificity

5.2.4.3.5. Stability

5.2.4.3.6. Extraction Efficiency

5.2.4.3.7. System Suitability

5.2.4.4. Pharmacokinetic Analysis of Nateglinide from Rabbits

5.3. References

6. Glipizide Matrices

6.1. HPMC-MCC-Starch Matrices

6.1.1. In Vitro Dissolution & Release Kinetic Studies

6.1.1.1. 3² Full factorial Experimental Design

6.1.2. Characterization of Optimized Formulations

6.1.2.1. Release Mechanism by Kopcha Model

6.1.2.2. Swelling Study
6.1.2.3. SEM Study 184
6.2. MCC-Alginate & MCC-Glyceryl Behenate Matrices 187
6.2.1. In Vitro Dissolution & Release Kinetic Studies 187
6.3. EC-HPMC, Guar Gum & Xanthan gum Matrices 191
6.3.1. In Vitro Dissolution & Release Kinetic Studies 191
6.3.2. Characterization of Optimized Formulations 199
6.3.2.1. Release Mechanism by Kopcha Model 199
6.3.2.2. Swelling Study 199
6.3.2.3. SEM Study 201
6.4. Carbopol Matrices 204
6.4.1. In Vitro Dissolution & Release Kinetic Studies 204
6.4.2. Characterization of Optimized Formulations 211
6.4.2.1. Release Mechanism by Kopcha Model 211
6.4.2.2. SEM Study 212
6.5. Carrageenan Matrices 213
6.5.1. In Vitro Dissolution & Release Kinetic Studies 213
6.6. Eudragit Matrices 218
6.6.1. In Vitro Dissolution & Release Kinetic Studies 218
6.6.2. Characterization of Optimized Formulations 222
6.6.2.1. Release Mechanism by Kopcha Model 222
6.6.2.2. Swelling Study 222
6.6.2.3. SEM Study 224
6.7. Sodium Alginate Matrices 227
6.8. Stability Studies 231
6.9. References 232

7. Nateglinide Matrices 237
7.1. HPMC-MCC-Starch Matrices 237
7.1.1. In Vitro Dissolution & Release Kinetic Studies 237
7.1.2. Characterization of Optimized Formulations 242
7.1.2.1. Release Mechanism by Kopcha Model 242
7.1.2.2. Swelling Study 243
7.1.2.3. SEM Study 244
7.2. Ethyl Cellulose & Carbopol Matrices 247
7.2.1. In Vitro Dissolution & Release Kinetic Studies 247
7.2.2. Characterization of Optimized Formulations 251
7.2.2.1. Release Mechanism by Kopcha Model 251
7.2.2.2. Swelling Study 252
7.2.2.3. SEM Study 256
7.3. Xanthan Gum Matrices 259
7.3.1. In Vitro Dissolution & Release Kinetic Studies 259
7.3.2. Characterization of Optimized Formulations 262
7.3.2.1. Release Mechanism by Kopcha Model 262
7.3.2.2. SEM Study 263
7.4. Alginate-Chitosan and Eudragit-HPMC Matrices 264
7.4.1. In Vitro Dissolution & Release Kinetic Studies 264
7.4.2. Characterization of Optimized Formulations 267
7.4.2.1. Release Mechanism by Kopcha Model 267
7.4.2.2. Swelling Study 268
7.4.2.3. SEM Study
7.5. Stability Studies
7.6. References

8. In Vivo Study

8.1. Pharmacokinetic study of M-3 Matrices
8.1.1. Drug Absorption Study in Rabbits and Pharmacokinetic Analysis
8.1.2. Establishment of IVIVC
8.1.3. Internal Validation of IVIVC
8.2. Pharmacokinetic study of Glytop-2.5 SR, M-25, M-75 and M-120 Matrices
8.3. Pharmacokinetic study of Natelide-60, J-11 and J-21 Matrices
8.4. References

Section IV Conclusions

9. Conclusions