List of Figures and Tables

Chapter 1 Introduction

Figure 1.1: Linear polymer. 12
Figure 1.2: Polymer with backbone chain and pendant. 12
Figure 1.3: Repeating structure. 13
Figure 1.4: Various types of polymers. 14
Figure 1.5: Fringed micelle concept for polymer morphology. 18
Figure 1.6: Models proposed for chain folding in single crystals of polymers. 20
Figure 1.7: Specific Volume versus Temperature graph. 22
Figure 1.8: Model representations of the amorphous state: (a) interpenetrating coils, (b) and (c) honeycomb and meander model, (d) folded chain fringed micellar grains and (e) fringed micellar domain structure.
Figure 1.9a: Cross-sectional view of the structure of semi-crystalline polymers. 26
Figure 1.9b: View from parallel to the machine-drawing plane of the structure of semi-crystalline polymers. 26
Figure 1.10: Energy partitioning in SRIM. 47
Figure 1.11: SRIM calculated electronic (ionization) and nuclear (Phonons+vacancies) LET for 100 keV and 1MeV Ar ion irradiation of polypropylene. 52

Chapter 2 Instrumentation and Technique

Figure 2.1: General layout plan of the cyclotron laboratory. 66
Figure 2.2a: Configuration of Dee chamber with the pole pieces. 68
The spaces are also shown.
Figure 2.2b: Profile of the clamp plate attached to the chamber. 68
Figure 2.3: Circuitry used for stabilizing the voltage of the DC generator for the main magnet and the analyzer. 69
Figure 2.4: Variation of the magnetic field of the main magnet in the chamber. 69
Table 2.1: The detailed characteristics of the machine are summarized as below.

Chapter 3 Experimental Details
Table 3.1: Some of the physical and chemical properties of the polymers used.
Figure 3.1: Two roll mill.
Table 3.2: Thickness of the polymers used.
Table 3.3: Range and energy loss of 3 MeV proton in polymer used.
Table 3.4: Irradiation details of polymers.
Figure 3.2: FTIR Spectrometer.
Figure 3.3: Vickers' Microhardness Tester with computer setup.
Figure 3.4: Scratch of Microscope-Vickers' Microhardness Tester.
Figure 3.5: LCR meter.
Figure 3.6: Schematic diagram of sample holder used in AC electrical conductivity measurement.
Figure 3.7: Sketch diagram of TGA measurement.
Figure 3.8: Sketch diagram of DSC measurement.
Figure 3.8: TGA/DSC measurement with computer setup.

Chapter 4 Results and Discussion
Figure 4.1: FTIR spectra for pristine and irradiated polypropylene films.
Figure 4.2: Conductivity versus Log f for pristine and irradiated polypropylene films.
Figure 4.3: \(\tan \delta \) versus Log f for pristine and irradiated polypropylene films.
Figure 4.4: Dielectric constant versus Log f for pristine and irradiated polypropylene films.
Figure 4.5: TGA thermograms for pristine and irradiated polypropylene films.
Figure 4.6: \(\ln (\ln(m_0/m)) \) versus \(10^5/T \) (K\(^{-1}\)) for the pristine and irradiated polypropylene films.
Figure 4.7: Optical micrographs of pristine and irradiated polypropylene films; (a) pristine, (b) \(10^{13} \) ions/cm\(^2\).
and (c) 10^{14} ions/cm2.

Figure 4.8: FTIR spectra for pristine and irradiated polyimide/kapton films.

Figure 4.9: Conductivity versus Log f for pristine and irradiated polyimide/kapton films.

Figure 4.10: $\tan \delta$ versus Log f for pristine and irradiated polyimide/kapton films.

Figure 4.11: Dielectric constant versus Log f for pristine and irradiated polyimide/kapton films.

Figure 4.12: TGA thermograms for pristine and irradiated polyimide/kapton films.

Figure 4.13: DSC thermograms for pristine and irradiated polyimide/kapton films.

Figure 4.14: Microhardness for pristine and irradiated polyimide/kapton films.

Figure 4.15: Optical micrographs for pristine and irradiated polyimide/kapton films (a) pristine, (b) 10^{15} ions/cm2, (c) 10^{14} ions/cm2 and (d) 10^{15} ions/cm2.

Figure 4.16: FTIR spectra for pristine and irradiated polyethylene terephthalate films.

Figure 4.17: Conductivity versus Log f for pristine and irradiated polyethylene terephthalate films.

Figure 4.18: $\tan \delta$ versus Log f for pristine and irradiated polyethylene terephthalate films.

Figure 4.19: Dielectric constant versus Log f for pristine and irradiated polyethylene terephthalate films.

Figure 4.20: TGA thermograms for pristine and irradiated polyethylene terephthalate films.

Figure 4.21: $\ln (\ln(m_0/m))$ versus $10^3/T$ (K^{-1}) for the pristine and irradiated polyethylene terephthalate films.

Figure 4.22: DSC thermograms for pristine and irradiated polyethylene terephthalate films.

Figure 4.23: Microhardness for pristine and irradiated polyethylene terephthalate films.

Figure 4.24: Optical micrographs for pristine and irradiated polyethylene terephthalate films (a) pristine,
(b) 10^{13} ions/cm2, (c) 10^{14} ions/cm2 and (d) 10^{15} ions/cm2.

Figure 4.25: FTIR spectra for pristine and irradiated polyether sulfone films.

Figure 4.26: Conductivity versus Log f for pristine and irradiated polyether sulfone films.

Figure 4.27: $\tan \delta$ versus Log f for pristine and irradiated polyether sulfone films.

Figure 4.28: Dielectric constant versus Log f for pristine and irradiated polyether sulfone films.

Figure 4.29: TGA thermograms for pristine and irradiated polyether sulfone films.

Figure 4.30: DSC thermograms for pristine and irradiated polyether sulfone films.

Figure 4.31: Microhardness for pristine and irradiated polyether sulfone films.

Figure 4.32: Optical micrographs of pristine and irradiated polyether sulfone films (a) pristine, (b) 10^{13} ions/cm2, (c) 10^{14} ions/cm2 and (d) 10^{15} ions/cm2.

Figure 4.33: FTIR spectra for pristine and irradiated polycarbonate films.

Figure 4.34: Conductivity versus Log f for pristine and irradiated polycarbonate films.

Figure 4.35: $\tan \delta$ versus Log f for pristine and irradiated polycarbonate films.

Figure 4.36: Dielectric constant versus Log f for pristine and irradiated polycarbonate films.

Figure 4.37: TGA thermograms for pristine and irradiated polycarbonate films.

Figure 4.38: In (ln$(m_0/m))$ versus $10^3/T$ (K$^{-1}$) for the pristine and irradiated polycarbonate films.

Figure 4.39: DSC thermograms for pristine and irradiated polycarbonate films.

Figure 4.40: Microhardness for pristine and irradiated polycarbonate films.

Figure 4.41: Optical micrographs of pristine and irradiated polycarbonate films (a) pristine, (b) 10^{13} ions/cm2, (c) 10^{14} ions/cm2 and (d) 10^{15} ions/cm2.
Figure 4.42: FTIR spectra for pristine and irradiated blend polymer films.

Figure 4.43: Conductivity versus Log f for pristine and irradiated polymer blend films.

Figure 4.44: tan δ versus Log f for pristine and irradiated blend polymer films.

Figure 4.45: Dielectric constant versus Log f for pristine and irradiated blend polymer films.

Figure 4.46: TGA thermograms for pristine and irradiated blend polymer films.

Figure 4.47(a): ln (ln(m0/m)) versus 10^3/T (K^-1) for the pristine and irradiated blend polymer films.

Figure 4.47(b): ln (ln(m0/m)) versus 10^3/T (K^-1) for the pristine and irradiated blend polymer films.

Figure 4.48: DSC thermograms for pristine and irradiated blend polymer films.

Figure 4.49: Microhardness for pristine and irradiated blend polymer films.

Figure 4.50: Optical micrographs of pristine and irradiated blend polymer films (a) pristine, (b) 10^13 ions/cm^2, (c) 10^14 ions/cm^2 and (d) 10^15 ions/cm^2.