CHAPTER - 4

AZO DERIVATIVES OF 1-HYDROXYANTHRACENE
INTRODUCTION
The chemistry of diazo and azo compounds possess a surprising number of facts and a glance at the historical development of this field, reaching as it does into both aliphatic and aromatic chemistry, shows in how many directions progress has been made. The history and the development in the field has been reviewed (1-3). The various aspects of chemistry of azo compounds is discussed by Zollinger (4).

Preparation of Aromatic Diazocompounds:

Several methods are reported for the preparation of aromatic azo compounds. Saunders has given different routes for preparing aromatic azo compounds in a tabular form in his book (5). The important method is the rearrangement of nitrosoacylarylamines (6,7). Later on Huisgen et al. studied this rearrangement and elucidated the mechanism (8-12).

Tedder has described an interesting way of introducing a diazonium group into aromatic systems (13-17). In this method phenols are treated with two equivalents of nitrous acid and give, via the intermediate nitroso compound, the diazonium salt in good yield. The equation can be given as:

\[\text{ArH} + 2\text{HNO}_2 + \text{HX} \rightarrow \text{ArN}_2^+\text{X}^- + 2\text{H}_2\text{O} + 20. \]
The formation of diazonium compounds by reactions of nitroso compounds with nitric oxide was first observed by Bamberger(18). Gowenlock and Luttke discussed its mechanism(19).

Noteworthy is also the so-called self-diazotization discovered by Sinlbohm(20-22), several nitroaniline derivatives on treatment with hydrochloric acid in acetic acid solution form the corresponding chlorodiazobenzenes e.g.

\[
\begin{align*}
\text{NH}_2 & \quad \text{NO}_2 \\
\text{O}_2\text{N} & \\
\end{align*}
\]

\[+ 2H^+ + Cl^- \rightarrow \]

\[
\begin{align*}
\text{N}_2^+ & \quad \text{Cl} \\
\text{O}_2\text{N} & \\
\end{align*}
\]

\[+ 2H_2O \]

The usual method for preparing diazo compound is diazotization with alkali nitrite in aqueous solution. In this method diazotization is carried out by allowing sodium nitrite to act on a solution of aromatic amine in mineral acid at low temperature i.e. about 0-5°C. The overall equation for this process is:

\[
\text{Ar-NH}_2 + 2HX + \text{NaNO}_2 \rightarrow \text{Ar-N}_2X + \text{NaX} + 2\text{H}_2\text{O}
\]

\((X = \text{Cl, Br, NO}_3, \text{HSO}_4, \text{etc.})\)
A newer technique for monodiazotization of aromatic diamines is claimed by Hoechst A.G. (23). With some modification Shah and Upasani have monodiazotized several aromatic diamines and have coupled them with different naphthol sulphonic acids (24).

Absorption Spectra of Azo Compounds:

Colour, the most important property of the dyestuff, is the interpretation by the mind of the response of the retina to stimulation by light, which is that portion of electromagnetic radiation to which the eye is sensitive. Electromagnetic radiation is energy propagated through space in the form of an oscillating electric and magnetic field, which can be represented as a sinusoidal wave with the characteristic of wavelength (\(\lambda\)), frequency (\(\nu\)) and energy (E). Human eyes are sensitive only to the visible portion of the spectrum, that is to light of wavelength between 400 and 750 \(\mu\)m. A knowledge of the extent to which different frequencies of radiation are absorbed by a substance allows the colour of that substance to be determined for a given set of circumstances. If a substance is illuminated by radiation that is uniformly intense throughout the visible region of the spectrum (i.e. white light), then bands of wavelengths, when absorbed, will give rise to the colours listed in the following Table.
The absorption spectra of azo compounds have been the subject of some investigations. Brode has studied the absorption spectra of benzeneazo-benzene\(^2\). He observed that the absorption band is not simple, but consists of a smaller bands on the lower frequency side of the principal band. Later on Uymura reported absorption spectra of azo derivatives\(^2\). Some more data are given by Costa\(^2\), and sixteen aminoazobenzene dyes has been investigated in 50% alcoholic hydrochloric solution using ultraviolet and visible spectra\(^2\). Absorption spectra of azobenzene derivatives are redetermined and are analysed in terms of simplified L.O.A.O. - M.O. theory\(^3\). The spectra of azo dyes derived from 4-hydroxy and 4-acetoxybenzene is reported by Skulski et. al.\(^3\). Effect of alkali on the spectra of azo dyes has been studied by McSowell\(^3\). In the recent years different workers have discussed absorption spectra of azo dyes\(^3\).

The Infra Red Spectra of Azo Dyes:

The group frequencies of the azo compounds are
constantly attracting the researchers. Herzberg has reported $-\text{N}=$ streching vibration of azomethane at 1575 cm$^{-1}$ (37). Later on in 1950, Tetlow suggested the possibility that the characteristic frequency for the skeleton $-\text{C}=$$-\text{N}=$$-\text{C}$ may exist at 927 cm$^{-1}$ (38). He observed that cis- and trans-azobenzenes show absorption at 927 cm$^{-1}$, which is absent in hydrazobenzene. Also this band shows a Christiansen Alter effect only in the trans form, which indicates its association with a skeleton group along the direction of maximum polarizability. Le Feyre et al. have studied many aromatic diazo-compounds (39-41). They find common absorptions at 1405 ± 14 cm$^{-1}$ and at 1577 ± 8 cm$^{-1}$, and although they assign the latter to the $-\text{N}=$$-\text{N}$ link, they point out that it could well arise from ring vibrations. The controversy on whether bands at 1600 or 1450 cm$^{-1}$ should assign for $-\text{N}=$$-\text{N}$ has been resolved by some elegant work of Lütteke et al. (42). Using N^{15} substitution they have been able to show that in aromatic azo compounds in the trans configuration, the $-\text{N}=$$-\text{N}$ band occurs between 1440 and 1410 cm$^{-1}$. Morgan has given some further data on the $-\text{N}=$$-\text{N}$ frequencies of some aryl azo naphthols (43). These show $-\text{N}=$$-\text{N}$ bands near 1450 cm$^{-1}$, but they are of little use for identification purposes.
Fluorescence Spectra of Azo Dyes:

As early as in 1949, Pringsheim has noted that among more than 700 azo dyes, there is not a single example which is known to have fluorescence (44). This fact was understood on the basis of properties of the chemical bond in the azo group. It is known that π bond between the nitrogen atoms has a greater energy value (50 K.cal) than a σ-bond (30 K.cal). When the molecules are excited, a loosening of π bonds takes place, during which the bond in the $-\text{N}^\equiv\text{N}-$ group is considerably weakened. The energy of an absorbed light quantum is either quickly transformed to thermal energy by way of vibration of single bonds, or leads to photodecomposition of the compound (45).

Murmukhametov et. al. have attempted to clarify the conditions for the appearance of fluorescence in azo compounds and have tried to establish the connection between emission spectra and molecular structure (46). Their study has derived following conclusions:

Unsubstituted azobenzene (I) has no luminescence either as powder or in solution. An intense fluorescence appears when an $-\text{OH}$ group is introduced on the benzene or naphthalene ring in the position ortho to the azo group. The compounds with the highest symmetry have the most spectral structure. The substituted benazo-naphthalenes
having an OH group in the peri-position to the azo group (II & III) do not fluoresce.

Ortho-amino derivatives (e.g., IV) show no luminescence under any condition while para-amino derivative(V) fluoresces only as a powder.
Present Work

Xogodinski was first to suggest that 1-hydroxyanthracene combines with diazonium salts to form bluish red azo compounds, but he did not isolate any of them. In 1916 Sircar prepared azo derivatives of 1-hydroxyanthracene by reacting 1-hydroxyanthracene with diazonium salts of aniline, p-nitroaniline, p-bromoaniline and sulphanilic acid. He examined these dyes for their dyeing properties on cotton and wool and compared it with the corresponding azo-α-naphthol dyes and azo anthranol dyes. A series of long-chain alkyl aromatic azo compounds based on 1-hydroxyanthracene has been prepared and their spreading properties on water have been examined. Osponson has studied the absorption spectra of 4-phenylazo-1-hydroxyanthracene.

It was proposed to synthesize some more azo derivatives of 1-hydroxyanthracene and to study their visible, i.r. and fluorescent spectra. Eight new azo derivatives have been synthesized by coupling different diazonium salts with alcoholic 1-hydroxyanthracene. Their spectral properties viz. visible, i.r. and fluorescent spectra have been studied.
EXPERIMENTAL
EXPERIMENTAL

Synthesis of 1-Hydroxyanthracene:
It was prepared by sulphonation of anthraquinone in presence of yellow mercuric oxide (51) followed by reduction to anthracene-1-sulphonic acid (52) and then fusion with potassium hydroxide to yield 1-hydroxyanthracene (53). The detailed procedure is described in chapter 3.

Synthesis of 4-Arylazo-1-Hydroxyanthracene:
The aromatic amines were obtained from B.D.H. or Koch-light Laboratories Ltd. These were used as such without any purification. Sodium nitrite used were of E.Merck, G.R. grade. All other chemicals used were A.R. or B.D.H. chemicals.

The diazotization was carried out in the usual way by dissolving aromatic amine in dil. HCl and adding sodium nitrite solution at 0-5°C. A typical procedure is described below (54).

O-Nitroaniline (0.1 mole) was dissolved in 1:1 hydrochloric acid (50 ml) in a conical flask. The mixture was cooled to 0°C in an ice-salt-bath with vigorous shaking with the addition of a little crushed ice. The salt, o-nitroaniline, hydrochloride separated as a finely divided crystalline precipitate. To this aqueous sodium nitrite solution (0.1 mole) was added with shaking at a temperature of 0.5°C. Thus formed diazonium chloride solution was kept
at this temperature for half an hour.

The coupling was carried out in alcoholic medium. To a alcoholic solution of 1-hydroxyanthracene, aromatic diazonium chloride solution was slowly added at 0-5°C with constant stirring. After complete addition, the mixture was stirred for one hour. The precipitate obtained was filtered and dissolved in potassium hydroxide (5% 25ml). The solution after filtration was acidified with concentrated hydrochloric acid. Again the precipitates obtained were filtered and washed with distilled water till the filtrate is free from acid. The precipitates were dried at 40°C under vacuum. These were crystallized till the constant melting point is obtained. The melting point and analytical data are given in Table 1. Melting points were recorded by using Toshniwal Melting Point Apparatus in open capillary and are uncorrected.

Visible Spectra:

The absorption spectra of these derivatives were taken on a SPEKOL Spectrophotometer using 10 mm cell in alcohol and in acetone. The absorption maxima are recorded in Table 2 and are shown in figures 1 to 8.

Infra Red Spectra:

The i.r. spectra were scanned on a Beckmann IR-20 spectrophotometer in nujol mull. The characteristic frequencies are tabulated in Table 3 and some representative spectra are shown in figures 9 to 11.
Fluorescence Spectra:

The fluorescence spectra (emission and excitation) were taken on a Aminco Fluorescence Spectrophotometer using alcohol as a solvent. The results are given in Table 4 and are shown in figures 13 to 16.
Table 1

4-Arylazo-1-hydroxyanthracene

<table>
<thead>
<tr>
<th>No.</th>
<th>X</th>
<th>M.P. in °C</th>
<th>Elemental Analysis</th>
<th>Found</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%C</td>
<td>%H</td>
</tr>
<tr>
<td>1.</td>
<td>o-Nitro</td>
<td>240 (d)</td>
<td>69.74 3.56 12.50</td>
<td>69.97 3.79 12.24</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>o-Chloro</td>
<td>250 (d)</td>
<td>72.08 3.810 8.231</td>
<td>72.22 3.912 8.427</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>m-Chloro</td>
<td>222.3 (d)</td>
<td>71.83 3.765 8.551</td>
<td>72.22 3.912 8.427</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>p-Chloro</td>
<td>275 (d)</td>
<td>72.15 3.814 8.128</td>
<td>72.22 3.912 8.427</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>2,3-Dichloro</td>
<td>250 (d)</td>
<td>65.12 3.218 7.456</td>
<td>65.39 3.269 7.529</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>2,4-Dichloro</td>
<td>179 (d)</td>
<td>65.00 3.111 7.621</td>
<td>65.39 3.269 7.629</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>2,6-Dichloro</td>
<td>198.20 (d)</td>
<td>65.22 3.030 7.686</td>
<td>65.39 3.269 7.629</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>p-Methoxy</td>
<td>145 (d)</td>
<td>76.60 4.536 8.531</td>
<td>76.82 4.878 8.536</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Absorption Spectra of 4-Arylazo-1-Hydroxyanthracene Derivatives:

<table>
<thead>
<tr>
<th>No.</th>
<th>Aryl group</th>
<th>(\lambda) max in ethanol (nm)</th>
<th>(E) max (\times 10^4)</th>
<th>(\lambda) max in acetone (nm)</th>
<th>(E) max (\times 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>o-Nitrophenyl</td>
<td>495</td>
<td>1.25</td>
<td>490</td>
<td>2.25</td>
</tr>
<tr>
<td>2.</td>
<td>o-Chlorophenyl</td>
<td>495</td>
<td>6.00</td>
<td>480</td>
<td>6.00</td>
</tr>
<tr>
<td>3.</td>
<td>m-Chlorophenyl</td>
<td>505</td>
<td>4.80</td>
<td>490</td>
<td>5.20</td>
</tr>
<tr>
<td>4.</td>
<td>p-Chlorophenyl</td>
<td>515</td>
<td>4.00</td>
<td>505</td>
<td>4.08</td>
</tr>
<tr>
<td>5.</td>
<td>2,3-Dichlorophenyl</td>
<td>485</td>
<td>2.76</td>
<td>470</td>
<td>3.44</td>
</tr>
<tr>
<td>6.</td>
<td>2,4-Dichlorophenyl</td>
<td>510</td>
<td>1.8</td>
<td>505</td>
<td>2.00</td>
</tr>
<tr>
<td>7.</td>
<td>2,6-Dichlorophenyl</td>
<td>495</td>
<td>3.68</td>
<td>485</td>
<td>4.8</td>
</tr>
<tr>
<td>8.</td>
<td>p-Methoxyphenyl</td>
<td>530</td>
<td>2.96</td>
<td>525</td>
<td>3.26</td>
</tr>
</tbody>
</table>
Table 3
Infra Red Spectra of 4-Arylazo-1-Hydroxyanthracene Derivatives:

<table>
<thead>
<tr>
<th>No.</th>
<th>Aryl group</th>
<th>V OH</th>
<th>V N-H</th>
<th>V C=N</th>
<th>V N=N</th>
<th>V C=O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>o-Nitrophenyl</td>
<td>-</td>
<td>1590</td>
<td>4590</td>
<td>-</td>
<td>1620</td>
</tr>
<tr>
<td>2.</td>
<td>o-Chlorophenyl</td>
<td>-</td>
<td>1600</td>
<td>1600</td>
<td>-</td>
<td>1640</td>
</tr>
<tr>
<td>3.</td>
<td>m-Chlorophenyl</td>
<td>-</td>
<td>1595</td>
<td>1595</td>
<td>-</td>
<td>1620</td>
</tr>
<tr>
<td>4.</td>
<td>p-Chlorophenyl</td>
<td>3405</td>
<td>-</td>
<td>-</td>
<td>1450</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>2,3-Dichlorophenyl</td>
<td>-</td>
<td>1600</td>
<td>1600</td>
<td>-</td>
<td>1630</td>
</tr>
<tr>
<td>6.</td>
<td>2,4-Dichlorophenyl</td>
<td>-</td>
<td>1600</td>
<td>1600</td>
<td>-</td>
<td>1620</td>
</tr>
<tr>
<td>7.</td>
<td>2,6-Dichlorophenyl</td>
<td>-</td>
<td>1590</td>
<td>1590</td>
<td>-</td>
<td>1620</td>
</tr>
<tr>
<td>8.</td>
<td>p-Methoxyphenyl</td>
<td>-</td>
<td>1590</td>
<td>1590</td>
<td>-</td>
<td>1610</td>
</tr>
</tbody>
</table>
Table 4

Fluorescence Spectra of 4-Arylazo-1-Hydroxyanthracene Derivatives:

<table>
<thead>
<tr>
<th>No.</th>
<th>Aryl group</th>
<th>Emission spectra in ethanol</th>
<th>Excitation spectra in ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\lambda_{\text{max}})</td>
<td>(\lambda_{\text{max}})</td>
</tr>
<tr>
<td>1.</td>
<td>o-Nitrophenyl</td>
<td>383 400 430</td>
<td>338 350 370</td>
</tr>
<tr>
<td>2.</td>
<td>o-Chlorophenyl</td>
<td>380 410 420</td>
<td>335 350 370</td>
</tr>
<tr>
<td>3.</td>
<td>m-Chlorophenyl</td>
<td>387 405 425</td>
<td>335 350 375</td>
</tr>
<tr>
<td>4.</td>
<td>p-Chlorophenyl</td>
<td>385 405 425</td>
<td>335 350 370</td>
</tr>
<tr>
<td>5.</td>
<td>2,3-Dichlorophenyl</td>
<td>350 370 390</td>
<td>- 313 -</td>
</tr>
<tr>
<td>6.</td>
<td>2,4-Dichlorophenyl</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>7.</td>
<td>2,6-Dichlorophenyl</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>8.</td>
<td>p-Methoxyphenyl</td>
<td>360 380 410</td>
<td>- 340 360</td>
</tr>
</tbody>
</table>
Fig. 3
IN ACETONE

VISU.E. SPECTRA
4-M-Chlorophenylazo-1-hydroxyanthraquinone
IN ETHANOL

WAVELENGTH (nm)

ABSORPTION (")
VISIBLE SPECTRA

4-Chlorophenylazo-1-HYDROXY ANTHRACENE

IN ACETONE

IN ETHER

Fig. 6

4-Chlorophenylazo-1-HYDROXY ANTHRACENE

IN ACETONE

Fig. 1
I.R. SPECTRA

4-(O-CHLOROPHENYLazo)-1-HYDROXYANTHRACENE.
Fig. 11

I.R. SPECTRA

4-(p-CHLOROPHENYLazo)-1-HYDROXYANTHRACENE.
4-HYDROXY-5-NITROPHENYL-1-VALENE

EXITED BY: 374 ± 1

EMISSION SPECTRA

EMITTED BY: 407 ± 1

EXCITATION SPECTRA

Wavelength in Å
Fig. 158

4-(CHLOROPHENYL)-15-1-HYDROXYANTHRACEN

EXCITED BY γ-RADIATION

EMITTED BY 3-RADIATION

Emission spectrum

Excitation spectrum

Wavelength in \(\mu \text{m} \)
4-(4'-CHLOROPHENYLazo)-1-HYDROXYANTHRALENE

EXITED BY 374 nm

EMISSION SPECTRA

EMITTED BY 400 nm

EXITATION SPECTRA

Wavelength in nm
4-(p-Chlorophenylazo)-1-hydroxyanthracene

Emission spectra

Exhibited by 400 nm

Excitation spectra

Wavelength in nm
RESULTS AND DISCUSSION
Visible Spectra:

Kuhn and Baer (55) were the first to point out that 4-phenylazo-1-naphthol (I) exists in solution as a tautomeric equilibrium mixture with the phenylhydrazone (II). Their results have been confirmed and extended by several authors (50, 56-59).

Fischer and Frie studied tautomericism and geometrical isomerism of arylazo-phenols and naphthols (61). They suggested cis- and trans- form of I, in analogy with azobenzene (62), the azo naphthalene (63) and 4-hydroxy-azo benzene (64). They have obtained two bands, one around 400 μ and the other around 480 μ. The former band has been assigned due to the trans-azoisomer (Ia) and the latter to the hydrazone (II) with conformity of the results of Burawoy and Thomson (58). In our study we have obtained
only one band around 500 nm region. This can be assigned due to the hydrazone form (III) of azo derivatives, instead of azo form (IV).

\[
\begin{align*}
\text{III} & \quad \text{IV} \\
\text{[Chemical structure diagram]} & \quad \text{[Chemical structure diagram]}
\end{align*}
\]

It is an established fact that the fine structure of the absorption curves and the intensities of bands are affected by the nature of the solvent used for spectroscopic examinations. In general with increasing solvent polarity the spectra suffer a loss of vibrational fine structure, because of a strong solvent-solute interaction in highly polar solvents especially when solute molecules possess induced or polar-dipolar characteristics. In ethanol the bands are very broad, but well defined. Similarly in acetone the bands are a little sharper than in ethanol. Among the striking observations of interest in the displacement of the bands to shorter wavelength with decreasing polarity and the dielectric constant of the solvent. However these observations are reversed with the found molar extinction coefficient e.g.
the molar extinction coefficient is greater when dielectric constant is lower. In all the dyes the following order is found:

<table>
<thead>
<tr>
<th>Dielectric Constant</th>
<th>Acetone</th>
<th>Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5</td>
<td>25.0</td>
<td></td>
</tr>
</tbody>
</table>

\[\lambda_{\text{max}} \text{ Acetone} < \text{ Ethanol} \]

\[\varepsilon_{\text{max}} \text{ Acetone} > \text{ Ethanol} \]

The introduction of the substituent group are also changing the position of the bands and their molar absorbity. The introduction of the methoxy group is electropositive, the positive tautomeric effect is much more powerful than the inductive effect and causing a bathochromic shift in the spectra, while the nitro and chloro are having a mesomeric effect(65-67) arising from resonance benzenoid forms have the lower shift.

\[\lambda_{\text{max methoxy}} > \lambda_{\text{max chloro and nitro}} \]

It has also been observed that the position of the substituents into benzene ring alters the spectrum. The introduction of the chlorine group in ortho, meta and para have following order:

\[\lambda_{\text{max ortho}} < \lambda_{\text{max meta}} < \lambda_{\text{max para}} \]

comp 2 < comp 3 < comp 4

Recently some azo derivatives of 9-hydroxyanthracene have been prepared and studied(68,69). The absorption maxima
(in dioxane) of these dyes have been given in Table 5. Considering the solvent effect negligible, we have compared it with the maxima (in acetone) of our derivatives.

It is clearly seen from Table 5 that shifting of the hydroxy and azo groups from 9 and 10 positions to 1 and 4 position causes a bathochromic shift of average 60 nm.

Infrared Spectra:

In the IR spectra of substituted dyes only the most predominant peaks (C=O, N-H and C=N) are assigned for their characterisation (Table 3). In the i.r.spectrum of the compounds 1 to 8, no peak has been observed around 3500 cm\(^{-1}\) due to the -OH stretching vibrations, except the compound 4(p-Cl-aniline), in which the -OH stretching vibrations are observed around 3405 cm\(^{-1}\) (Table 3). It confirms that these compounds have the keto-enol tautomerism and only compound 4 exist in the enol form. Due to the absence of -OH stretching in other compounds, they are discussed on the basis of keto form. In all the compounds the carbonyl stretching vibrations are assigned around 1620 ± 20 cm\(^{-1}\). Similarly the -NH banding vibrations are assigned around 1590 cm\(^{-1}\). These peaks are very sharp and having a high intensity. The peak due to C=N is generally found around 1640-1690 cm\(^{-1}\) and 1630-1660 cm\(^{-1}\) in alkyl compounds and unsaturated compounds respectively (70). In the present
Table 5
Comparison of the Absorption Maxima of 4-Arylazo-1-Hydroxyanthracene and 10-Arylazo-9-Hydroxyanthracene.

<table>
<thead>
<tr>
<th>No.</th>
<th>Aryl group</th>
<th>1-Hydroxy anthracene derivative (\lambda_{\text{max}}) in nm</th>
<th>9-Hydroxy anthracene derivative (\lambda_{\text{max}}) in nm</th>
<th>(\Delta \lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>o-Nitrophenyl</td>
<td>490</td>
<td>450</td>
<td>40</td>
</tr>
<tr>
<td>2.</td>
<td>o-Chlorophenyl</td>
<td>480</td>
<td>430</td>
<td>50</td>
</tr>
<tr>
<td>3.</td>
<td>m-Chlorophenyl</td>
<td>490</td>
<td>430</td>
<td>60</td>
</tr>
<tr>
<td>4.</td>
<td>p-Chlorophenyl</td>
<td>505</td>
<td>440</td>
<td>65</td>
</tr>
<tr>
<td>5.</td>
<td>p-Methoxyphenyl</td>
<td>525</td>
<td>440</td>
<td>85</td>
</tr>
</tbody>
</table>

\(\Delta \lambda = \lambda_{\text{max}}\) of 1-Hydroxyanthracene derivative - \(\lambda_{\text{max}}\) of 9-Hydroxyanthracene derivative.
investigation peak around 1590 cm\(^{-1}\) due to C-N stretching vibration is overlapping with -NH banding vibration and no separate peak is observed. The vibration due to the chloro group in the benzene ring are assigned around 890 cm\(^{-1}\).

Gawed et. al. have also observed the similar tautomerism in azo derivatives of 9-hydroxyanthracene(68).

Fluorescence Spectra:

The fluorescence spectra of 1- and 2-hydroxyanthracene has been studied by Suzuki et al.(71,72). For characterising anthracene derivatives use of fluorescence spectra is reported (73). In the present investigation the dyes derived from 1-hydroxyanthracene shows fluorescence in the region max 370-420 nm, except dyes 6 and 7, which have no fluorescence.

The fluorescence spectra of 1-phenylazo-2-hydroxy-naphthalene is interpreted in terms of an equilibrium between enol form (I) and dipolar form (II)(74). In the excited state the equilibrium is shifted towards the bipolar ion, which is responsible for the fluorescence.
4-Phenylazo-1-hydroxynaphthalene in powder form gives fluorescence in the near i.r. spectra region but in hexane it does not fluorescence (46). 4-Arylazo-1-hydroxyanthracene in ethanol gives fluorescence. Thus increase in fused ring system results in fluorescence. Of course ethanol as a solvent strongly affects the fluorescence spectrum of a molecule containing a hydroxyl group (OH) or an amino group (NH₂). The effect of solvent on fluorescence spectra is discussed by Berlamn (75).

Generally the substituents alter the spectrum. An introduction of the chlorine into the benzene ring diminishes the fluorescence (76). The same observation is recorded in the present investigation in dyes 6 and 7. Further the 2,3-dichlorophenylazo derivative has lowered shift as compared to monochloro azo derivative. Also the introduction of -NO₂ in the benzene nucleus has a low band energy favouring predissociation (76) and a rapid dissipation of the energy of electronic excitation. The dye o-nitrophenylazo derivative have some anomalies.
REFERENCES
REFERENCES

7. Bamberger, E. and Muller, J., Ann., 313, 126 (1900).
32. Modowell, W., Melliand Textilber, 4, 933 (1968).