TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>INTRODUCTION TO NONLINEAR OPTICS</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>EXPLANATION OF NONLINEAR OPTICS</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Nonlinear Optical Materials</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Applications of Nonlinear Optical Crystals</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Properties of an Ideal Nonlinear Optical Material (NLO)</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Organic Nonlinear Optical crystals</td>
<td>7</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Salient Features of Amino acid Nonlinear Optical crystals</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>METHODS OF CRYSTALLIZATION</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Low Temperature Solution Growth</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Slow Cooling Method</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Solvent Evaporation Method</td>
<td>12</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Temperature Gradient Method</td>
<td>13</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Bulk Crystal Growth</td>
<td>13</td>
</tr>
<tr>
<td>1.3.6</td>
<td>Submerged- Seed Solution Method</td>
<td>13</td>
</tr>
<tr>
<td>1.3.7</td>
<td>Top-Seeded Solution Method</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>1.3.8</td>
<td>Hanging -Seed Solution Method</td>
<td>14</td>
</tr>
<tr>
<td>1.3.9</td>
<td>Sankaranarayanan-Ramasamy Method</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>GLYCINE AND ITS APPLICATIONS</td>
<td>15</td>
</tr>
<tr>
<td>1.5</td>
<td>REVIEW OF LITERATURE</td>
<td>16</td>
</tr>
<tr>
<td>1.6</td>
<td>OBJECTIVES OF THE PRESENT WORK</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>CHARACTERIZATION TECHNIQUES</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>SINGLE CRYSTAL X-RAY DIFFRACITION</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>POWDER X-RAY DIFFRACITION</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>CHN ANALYZER</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETER (ICP-OES)</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>FOURIER TRANSFORM INFRA RED SPECTROMETER (FTIR)</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>UV-VIS-NIR SPECTROPHOTOMETER</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>DIFFERENTIAL SCANNING CALORIMETRY</td>
<td>32</td>
</tr>
<tr>
<td>2.8</td>
<td>NLO TEST-KURTZ POWDER SHG METHOD</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>CRYSTAL GROWTH AND CHARACTERIZATION OF γ-GLYCINE GROWN FROM ZINC SULPHATE</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>EXPERIMENTAL PROCEDURE</td>
<td>35</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Materials Used</td>
<td>35</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Crystal Growth of γ-Glycine</td>
<td>35</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Top-Seeded Solution Growth Method</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>RESULTS AND DISCUSSION</td>
<td>37</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Elemental and ICP-OES Analysis</td>
<td>37</td>
</tr>
</tbody>
</table>
4 CRYSTAL GROWTH AND CHARACTERIZATION
OF γ-GLYCINE GROWN FROM ZINC ACETATE 51
4.1 EXPERIMENTAL PROCEDURE 51
 4.1.1 Materials Used 51
 4.1.2 Crystal Growth 51
 4.1.3 Crystal Morphology 52
4.2 RESULTS AND DISCUSSION 55
 4.2.1 Single Crystal XRD and ICP-OES Studies 55
 4.2.2 Powder X-ray Diffraction Analysis 57
 4.2.3 FTIR Spectral Analysis 60
 4.2.4 Differential Scanning Calorimetry Analysis 62
 4.2.5 Optical Transmittance Studies 64
 4.2.6 SHG Efficiency Measurement 65
4.3 CONCLUSION 66

5 CRYSTAL GROWTH AND CHARACTERIZATION
OF γ-GLYCINE GROWN FROM SODIUM SULPHATE 67
5.1 EXPERIMENTAL PROCEDURE 67
5.1.1 Materials Used 67
5.1.2 Crystal Growth of γ-Glycine 67
5.1.3 Bulk Growth of α-Glycine 68
5.1.4 Top-Seeded Solution Growth method of
γ-Glycine 69
5.2 RESULTS AND DISCUSSION 70
5.2.1 CHN and ICP-OES Analysis 70
5.2.2 Powder X-ray Diffraction Studies 71
5.2.3 FTIR Spectral Analysis 73
5.2.4 DSC Studies 75
5.2.5 Optical Transmission Studies 76
5.2.6 Nonlinear Optical Test 77
5.3 CONCLUSION 77

6 CRYSTAL GROWTH AND CHARACTERIZATION
OF γ-GLYCINE GROWN FROM AMMONIUM
ACETATE 79
6.1 EXPERIMENTAL PROCEDURE 79
6.1.1 Materials Used 79
6.1.2 Crystal Growth of γ-Glycine 79
6.2 RESULTS AND DISCUSSION 80
6.2.1 Elemental Analysis 80
6.2.2 Powder X-ray Diffraction Analysis 80
6.2.3 FTIR Spectral Analysis 82
6.2.4 Differential Scanning Calorimetry Analysis 84
6.2.5 Optical Transmission Studies 85
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.6</td>
<td>Nonlinear Optical Test</td>
<td>86</td>
</tr>
<tr>
<td>6.3</td>
<td>CONCLUSION</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>CRYSTAL GROWTH AND CHARACTERIZATION OF γ-GLYCINE GROWN FROM AMMONIUM CARBONATE</td>
<td>88</td>
</tr>
<tr>
<td>7.1</td>
<td>EXPERIMENTAL PROCEDURE</td>
<td>88</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Materials Used</td>
<td>88</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Crystal Growth</td>
<td>88</td>
</tr>
<tr>
<td>7.2</td>
<td>RESULTS AND DISCUSSION</td>
<td>89</td>
</tr>
<tr>
<td>7.2.1</td>
<td>CHN Analysis</td>
<td>89</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Powder X-ray Diffraction Analysis</td>
<td>89</td>
</tr>
<tr>
<td>7.2.3</td>
<td>FTIR Spectral Analysis</td>
<td>91</td>
</tr>
<tr>
<td>7.2.4</td>
<td>DSC Analysis</td>
<td>93</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Optical Transmission Studies</td>
<td>94</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Nonlinear Optical Test</td>
<td>95</td>
</tr>
<tr>
<td>7.3</td>
<td>CONCLUSION</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>CRYSTAL GROWTH AND CHARACTERIZATION OF γ-GLYCINE GROWN FROM AMMONIUM SULPHATE</td>
<td>97</td>
</tr>
<tr>
<td>8.1</td>
<td>EXPERIMENTAL PROCEDURE</td>
<td>97</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Materials Used</td>
<td>97</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Crystal Growth</td>
<td>97</td>
</tr>
<tr>
<td>8.2</td>
<td>RESULTS AND DISCUSSION</td>
<td>100</td>
</tr>
<tr>
<td>8.2.1</td>
<td>CHN Analysis</td>
<td>100</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Powder X-ray Diffraction Analysis</td>
<td>100</td>
</tr>
<tr>
<td>8.2.3</td>
<td>FTIR Spectral Analysis</td>
<td>102</td>
</tr>
</tbody>
</table>
9 CRYSTAL GROWTH AND CHARACTERIZATION OF γ-GLYCINE GROWN FROM AMMONIUM FORMATE

9.1 EXPERIMENTAL PROCEDURE
 9.1.1 Materials Used
 9.1.2 Crystal Growth

9.2 RESULTS AND DISCUSSION
 9.2.1 Elemental Analysis
 9.2.2 Powder X-ray Diffraction Analysis
 9.2.3 Vibrational Analysis
 9.2.4 DSC Studies
 9.2.5 Optical Transmission Studies
 9.2.6 Nonlinear Optical Test

9.3 CONCLUSION

10 SUMMARY AND SUGGESTIONS FOR FUTURE WORK

10.1 SUMMARY

10.2 SUGGESTIONS FOR FUTURE WORK

REFERENCES

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Seven crystal systems and lattice parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of the unit cell</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Crystal data and structure refinement</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Selected bond lengths [Å] and angles [degree]</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Hydrogen coordinates (x 10^4) and isotropic</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>displacement parameters (Å² x 10^3)</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Hydrogen bonds [Å and degree]</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Atomic coordinates (x 10^4) and equivalent isotropic</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>displacement parameters (Å² x 10^3)</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Anisotropic displacement parameters (Å² x 10^3)</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Torsion angles [degree]</td>
<td>43</td>
</tr>
<tr>
<td>3.8</td>
<td>Powder XRD data profile of γ-glycine</td>
<td>45</td>
</tr>
<tr>
<td>3.9</td>
<td>Lattice parameters of γ-glycine</td>
<td>46</td>
</tr>
<tr>
<td>3.10</td>
<td>FTIR spectral data of γ-glycine crystal</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Nucleation table</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Results of single crystal XRD</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Results of ICP-OES analysis</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Powder XRD data of α-glycine single crystal</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Powder XRD data of γ-glycine single crystal</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>Unit cell results from powder XRD</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of FTIR spectrum of α and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ-glycine crystal</td>
<td>62</td>
</tr>
<tr>
<td>5.1</td>
<td>Result of CHN analysis of γ-glycine crystal</td>
<td>71</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.2</td>
<td>Powder XRD profile of γ-glycine single crystal</td>
<td>73</td>
</tr>
<tr>
<td>5.3</td>
<td>Frequencies of the fundamental vibrations of γ-glycine crystal</td>
<td>75</td>
</tr>
<tr>
<td>6.1</td>
<td>Powder XRD data profile of γ-glycine crystal</td>
<td>82</td>
</tr>
<tr>
<td>6.2</td>
<td>Lattice parameters of γ-glycine single crystal</td>
<td>82</td>
</tr>
<tr>
<td>6.3</td>
<td>Vibrational assignments for γ-glycine crystal</td>
<td>84</td>
</tr>
<tr>
<td>7.1</td>
<td>XRD data profile of γ-glycine crystal</td>
<td>91</td>
</tr>
<tr>
<td>7.2</td>
<td>Lattice parameters of γ-glycine single crystal</td>
<td>91</td>
</tr>
<tr>
<td>7.3</td>
<td>FTIR spectral data of γ-glycine crystal</td>
<td>93</td>
</tr>
<tr>
<td>8.1</td>
<td>XRD profile of γ-glycine single crystal</td>
<td>101</td>
</tr>
<tr>
<td>8.2</td>
<td>Lattice parameters of γ-glycine single crystal</td>
<td>102</td>
</tr>
<tr>
<td>8.3</td>
<td>Vibrational assignments of γ-glycine crystal</td>
<td>104</td>
</tr>
<tr>
<td>9.1</td>
<td>CHN data of γ-glycine crystal</td>
<td>109</td>
</tr>
<tr>
<td>9.2</td>
<td>XRD data of γ-glycine crystal</td>
<td>111</td>
</tr>
<tr>
<td>9.3</td>
<td>Lattice parameters of γ-glycine crystal</td>
<td>112</td>
</tr>
<tr>
<td>9.4</td>
<td>Vibrational assignments for γ-glycine crystal</td>
<td>113</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Electrons in a nonlinear crystal are bound in a Potential well, holding the electrons to lattice points in a crystal</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Two photons are welded together to produce a single photon with the energy of both original photons</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Photograph of harvested γ-glycine crystal</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Morphology of γ-glycine crystal (front view)</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Morphology of γ-glycine crystal (rear view)</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Photograph of bulk size γ-glycine crystal</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Atom numbering scheme for the γ-glycine crystal</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Packing diagram of γ-glycine</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Packing diagram of γ-glycine (3D view)</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>Indexed XRD profile of γ-glycine crystal</td>
<td>45</td>
</tr>
<tr>
<td>3.9</td>
<td>FTIR spectrum of γ-glycine crystal</td>
<td>47</td>
</tr>
<tr>
<td>3.10</td>
<td>DSC curve of γ-glycine crystal</td>
<td>48</td>
</tr>
<tr>
<td>3.11</td>
<td>UV spectrum of γ-glycine crystal</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Harvested seed crystal of α-glycine</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Bulk size of α-glycine crystal</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>α-glycine crystal (1: 0.2)</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>α-glycine crystal (1: 0.4)</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>γ-glycine crystal (1: 0.6)</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>γ-glycine crystal (1: 0.7)</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>γ-glycine crystal (1: 0.8)</td>
<td>55</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.8</td>
<td>γ-glycine crystal (1: 0.9)</td>
<td>55</td>
</tr>
<tr>
<td>4.9</td>
<td>Indexed XRD pattern of α-glycine</td>
<td>58</td>
</tr>
<tr>
<td>4.10</td>
<td>Indexed XRD pattern of γ-glycine</td>
<td>58</td>
</tr>
<tr>
<td>4.11</td>
<td>FTIR spectrum of α-glycine</td>
<td>61</td>
</tr>
<tr>
<td>4.12</td>
<td>FTIR spectrum of γ-glycine</td>
<td>61</td>
</tr>
<tr>
<td>4.13</td>
<td>DSC thermogram of α-glycine</td>
<td>63</td>
</tr>
<tr>
<td>4.14</td>
<td>DSC thermogram of γ-glycine</td>
<td>63</td>
</tr>
<tr>
<td>4.15</td>
<td>UV-visible-NIR spectrum of α-glycine</td>
<td>64</td>
</tr>
<tr>
<td>4.16</td>
<td>UV-visible-NIR spectrum of γ-glycine</td>
<td>65</td>
</tr>
<tr>
<td>5.1</td>
<td>Photograph of γ-glycine crystal</td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>Photograph of bulk size α-glycine crystal</td>
<td>69</td>
</tr>
<tr>
<td>5.3</td>
<td>Photograph of bulk size γ-glycine crystal</td>
<td>70</td>
</tr>
<tr>
<td>5.4</td>
<td>Indexed powder XRD pattern of γ-glycine crystal</td>
<td>72</td>
</tr>
<tr>
<td>5.5</td>
<td>FTIR spectrum of grown γ-glycine crystal</td>
<td>74</td>
</tr>
<tr>
<td>5.6</td>
<td>DSC thermogram of grown γ-glycine crystal</td>
<td>76</td>
</tr>
<tr>
<td>5.7</td>
<td>Optical transmittance spectrum</td>
<td>77</td>
</tr>
<tr>
<td>6.1</td>
<td>Photograph of the grown γ-glycine crystal</td>
<td>80</td>
</tr>
<tr>
<td>6.2</td>
<td>Indexed powder XRD pattern of γ-glycine crystal</td>
<td>81</td>
</tr>
<tr>
<td>6.3</td>
<td>FTIR spectrum of the grown γ-glycine crystal</td>
<td>83</td>
</tr>
<tr>
<td>6.4</td>
<td>DSC thermogram of γ-glycine crystal</td>
<td>85</td>
</tr>
<tr>
<td>6.5</td>
<td>Optical transmittance spectrum</td>
<td>86</td>
</tr>
<tr>
<td>7.1</td>
<td>Photograph of γ-glycine crystal</td>
<td>89</td>
</tr>
<tr>
<td>7.2</td>
<td>Indexed powder XRD pattern of γ-glycine crystal</td>
<td>90</td>
</tr>
<tr>
<td>7.3</td>
<td>FTIR spectrum of γ-glycine crystal</td>
<td>92</td>
</tr>
<tr>
<td>7.4</td>
<td>DSC thermogram of γ-glycine crystal</td>
<td>94</td>
</tr>
<tr>
<td>7.5</td>
<td>Optical transmittance spectrum</td>
<td>95</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>8.1</td>
<td>γ-glycine crystal grown from submerged seed solution method</td>
<td>98</td>
</tr>
<tr>
<td>8.2</td>
<td>γ-glycine crystal grown from solution growth method</td>
<td>99</td>
</tr>
<tr>
<td>8.3</td>
<td>γ-glycine crystal grown from hanging seed method</td>
<td>99</td>
</tr>
<tr>
<td>8.4</td>
<td>Indexed powder XRD pattern of γ-glycine crystal</td>
<td>101</td>
</tr>
<tr>
<td>8.5</td>
<td>FTIR spectrum of pure glycine (Raw material)</td>
<td>103</td>
</tr>
<tr>
<td>8.6</td>
<td>FTIR spectrum of γ-glycine crystal</td>
<td>103</td>
</tr>
<tr>
<td>8.7</td>
<td>DSC thermogram of γ-glycine crystal</td>
<td>105</td>
</tr>
<tr>
<td>8.8</td>
<td>Optical transmittance spectrum</td>
<td>106</td>
</tr>
<tr>
<td>9.1</td>
<td>Photograph of γ-glycine crystal</td>
<td>109</td>
</tr>
<tr>
<td>9.2</td>
<td>Indexed powder XRD pattern of γ-glycine crystal</td>
<td>111</td>
</tr>
<tr>
<td>9.3</td>
<td>FTIR spectrum of γ-glycine</td>
<td>113</td>
</tr>
<tr>
<td>9.4</td>
<td>DSC thermogram of γ-glycine crystal</td>
<td>114</td>
</tr>
<tr>
<td>9.5</td>
<td>Optical transmittance spectrum</td>
<td>115</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>C₂H₃NO₂</td>
<td>Aminoacetic acid</td>
</tr>
<tr>
<td>NH₄C₂H₃O₂</td>
<td>Ammonium acetate</td>
</tr>
<tr>
<td>(NH₄)₂CO₃</td>
<td>Ammonium carbonate</td>
</tr>
<tr>
<td>NH₄HCO₂</td>
<td>Ammonium formate</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>Ammonium sulphate</td>
</tr>
<tr>
<td>AR</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>Å</td>
<td>Armstrong</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>CHN</td>
<td>Carbon Hydrogen Nitrogen</td>
</tr>
<tr>
<td>CRO</td>
<td>Cathode Ray Oscilloscope</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>η</td>
<td>Conversion efficiency</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>Δ</td>
<td>Delta</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>2H₂O</td>
<td>Dihydrate</td>
</tr>
<tr>
<td>E</td>
<td>Electric field vector</td>
</tr>
<tr>
<td>eV</td>
<td>Electron volt</td>
</tr>
<tr>
<td>Eₜ</td>
<td>Energy band gap</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>ν</td>
<td>Frequency</td>
</tr>
<tr>
<td>ω</td>
<td>Frequency</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width Half Maximum</td>
</tr>
</tbody>
</table>
\(\gamma \) - Gamma

\(g \) - Gram

7H\(_2\)O - Heptahydrate

HPLC - High performance liquid chromatography

h - Hour

P - Induced polarization

ICP-OES - Inductively Coupled Plasma Optical Emission Spectrometry

IR - Infrared

\(\alpha, \beta \) and \(\gamma \) - Interfacial angles

K - Kelvin

Kg - Kilogram

\(\chi^{(1)} \) - Linear susceptibility

MHz - Mega hertz

\(\mu \)m - Micrometer

\(\mu \)s - Microsecond

\(\mu \)V - Microvolt

mJ/pulse - milli Joule per pulse

mg - Milligram

mj - Millijoules

ml - Millilitre

ml/hr - Millilitre per hour

mm - Millimeter

mV - Millivolt

M - Molar

nm - Nanometer

ns - Nanoseconds

NIR - Near Infrared

Nd:YAG - Neodymium: Yttrium Aluminium Garnet
HNO₃ - Nitric acid
NLO - Nonlinear Optical
χ⁽²⁾, χ⁽³⁾ - Nonlinear susceptibility
τ - Nucleation/induction period
ω - Omega
ppm - Parts per million
cm⁻¹ - Per centimeter
% - Percentage
μ₀ - Permeability of free space
ε₀ - Permittivity of free space
PMT - Photomultiplier Tube
hν - Photon energy
KBr - Potassium bromide
KDP - Potassium Dihydogen Phosphate
SHG - Second Harmonic Generation
Na₂SO₄ - Sodium sulphate anhydrous
T - Temperature
θ - Theta
UV - Ultraviolet
a, b and c - Unit cell parameters
c - Velocity of light
νs - versus
W - Watt
λ - Wavelength
k - Wavenumber
XRD - X-ray Diffraction
C₄H₆O₄Zn - Zinc acetate
ZnSO₄ - Zinc sulphate