APPENDIX - A

QUESTIONNAIRE

**
WHAT DO YOU THINK OF YOUR TEACHER

Following are questions about teachers. Below each question is a scale which you can check to indicate your answer to the question. Please answer frankly and honestly. Your teacher will never know how you, as an individual rate him or her.

Please fill up the following blank spaces:

Name:............... Class:............
Age:........ Rural or Urban:.......
Sex:........ Name of Teacher:........
Religion:................. School:................

Particulars of the Parents:

<table>
<thead>
<tr>
<th></th>
<th>Father</th>
<th>Mother</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alive/Dead</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>Education</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>Occupation</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>Monthly income</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>Step parents if any</td>
<td>......</td>
<td>......</td>
</tr>
</tbody>
</table>

Your position in order of birth
First:.............
Middle:...........
Last:.............

Does your mother work?
What is your opinion concerning the amount of knowledge this teacher has of the subject taught. Mark one.

5. Has a masterful knowledge of the subject taught - seems to know almost everything about it. Evidently reads and studies widely in the field.

4. Has a very good knowledge and understanding of the subject.

3. Has a satisfactory knowledge and understanding of the subject.

2. Knowledge limited to pupil text-book states facts incorrectly once in a while.

1. Insufficient knowledge- state facts incorrectly rather often. Seriously lacking in the understanding of important parts of the subjects.

What is your opinion concerning this teacher's fairness in marking.

5. Absolutely fair. All pupils get exactly the grades they deserve.

4. Tries to be fair and nearly always succeeds.

3. Most pupils get the grades they deserve. A few are graded either too high or too low.

2. Certain favourites are nearly always graded too high, and certain disliked pupils are nearly always graded too low.
1. Very unfair. Grades are nearly always determined by factors (things) that should have no influence.

3:- How will do you like this teacher personally?
5. I like this teacher extremely well.
4. I like this teacher better than most of the teachers I have had.
3. I like this teacher about as well as most of the teachers I have had.
2. I like this teacher less than most of the teachers I have had.
1. I have a strong dislike for this teacher.
4:- How much are you learning this teacher.
5. I learn surprisingly large amount from this teacher.
4. I learn more from this teacher than I have learned from most of the teachers I have had.
3. I learn about as much from this teacher as from most of the teachers I have had.
2. I learn less from this teacher that I have learned from most of the teachers I have had.
1. I learn practically nothing from this teacher.
5:- What is your opinion of the discipline practiced by the members of this class?
5. Every one is so busy and interested with the class work that no discipline problems ever arise.

4. Nearly all students are so interested in and busy with the class work that very few discipline problems ever arise.

3. Good cooperation is evident on the part of most students. Most students pay attention to the work at hand.

2. Occasionally members of the class are too inattentive and disorderly to do well the things that they should be doing.

1. Common general disorder. Work is often interrupted by disorderly and noisy students.

6: - At present, how will you do you like the subject by this teacher?

5. I am deeply interested. I work willingly and enthusiastically most of the time under this teacher.

4. Must interested. I like the subject quite well.

3. I have a fair amount of interest in and liking of the subject.

2. I have little interest in and liking for the subject.

1. I hate the subject.
7:- What is your opinion concerning the sympathy shown by this teacher?

5. Always kind, considerate and friendly. Always able to see and understand the students' point of view when a question problem or difficulty arises.

4. Nearly always kind, considerate and friendly. Nearly always able to understand the students position and willing to help students through their difficulties.

3. Generally kind, considerate and friendly but every once in a while fails to see the students point of view.

2. Tries to be kind and helpful, but it is often impatient and sarcastic. Usually has difficulty in seeing the students' side of the question.

1. Almost always harsh, faultfinding and inconsiderate.

8:- What is your opinion concerning the value that the study of the topics and problems of this class has for you?

5. Considering the thing that are being studied and considering the manner in which the class is being conducted, I think that I have profited as much or more from this class than from any other class in which I have ever been enrolled.

4. I rate this class above average in usefulness and value.
3. I judge this class to be about average in usefulness and value.

2. The things that I have got from this class may be helpful to me sometime but I doubt it.

1. I think that the time spent in the class to date has been a complete waste of time for me.

9: What is your opinion concerning the ability of this teacher to assist students in planning and organizing classroom work?

5. This teacher is unusually efficient in classroom leadership. All students always have well made and clearly understood plans for the classroom work.

4. This teacher does a good job of assisting most students in forming useful and clearly understood plans for their work.

3. This teacher is about as effective as most teacher in assisting students to make plans that are useful in guiding their efforts.

2. The teacher often does a poor job for helping to plan the work. As a result, much time is wasted.

1. The students have not clearly understood plans in mind. They often waste time when they should be working.
10:- What is your opinion concerning the ability of this teacher to explain things clearly?

5. All explanations are easily understood. Students have no difficulty/understanding the points or things that this teacher discuss/from time to time. Even hard things are made to seem easy.

4. Nearly all explanations are easily understood.

3. Most of the explanations and comments of this teacher are understood by students.

2. Nearly half of the explanations and comments by this teacher are hard to understand.

1. Most explanations are difficult to understand. Students generally have trouble in understanding what this teacher really tries to say.

11:- What is your opinion concerning the fairness of this teacher's decision regarding the students?

5. Absolutely fair and impartial in all matters.

4. Tries to be fair and nearly always succeeds.

3. Most students are treated fairly. A few receive special advantages and a few fail to get what is coming to them.
2. Certainly favorites nearly always receive undeserved favour and privileges and certain disliked students are discriminated against.

1. Very unfair. Many decisions are influenced by things that should have no influence - Marked favouritism shown toward some students.

12:- What is your opinion concerning the general (all round) teaching ability of this teacher?

5. One of the strongest teacher I have ever had from the standpoint of real teaching ability.

4. Has more teaching ability, than most of the teachers I have had, but can not be classed as one of the very best.

3. Neither outstanding nor inferior - falls about in the middle.

2. Weaker than most of the teachers I have had, but not one of the very poorest.

1. One of the poorest teacher I have ever had from the standpoint of real teaching ability.

13:- What is your opinion concerning the personal appearance of this teacher?

5. Always neat and clean in dress and personal appearance.
4. Nearly always careful about his personal appearance
3. Generally careful about his personal appearance.
2. Often careless about his personal appearance
1. Very careless. Seems to care nothing about his appearance.

14:- To what extent do students in this class share decisions with the teacher?

5. At all times we have an opportunity to discuss and decide how we shall study and how shall work.

4. As a class we usually have something to say in planning our work, although on some matters the teacher does the deciding.

3. Part of the time the teacher decided, and part of the time we as a class decide what we shall study and how we shall go about it.

2. Once in a while we are permitted to have something to say about our work but usually the teacher does most of the deciding.

1. The teacher always tells us what to do and how to do it.

15:- To what extent do you feel free to work as you wish in this class?

5. I have the greatest freedom to do the things the way I think best.
4. Sometimes I have to do things a certain way but almost always I can do things my way.

3. About half of the time I can do things the way I want to, and about half of the time I have to do them the way I am told.

2. Once in a while I can do things as I wish, but usually I have to do things as I am told.

1. I am always told how to do things. I can never do them my way.

16: What is your opinion of the extent to which this teacher understands you and is concerned about you and your problems?

5. This teacher is very concerned about my problems and always understood them.

4. This teacher tries to understand my problems and is usually somewhat concerned about them, although not always.

3. This teacher has only a fair amount of understanding of my problems and is only moderately concerned about them.

2. Occasionally this teacher may have some concern about and understanding of my problems, but only very slightly.
1. This teacher has no concern about my problems. He never tries to understand them.

17:- How well do you think this teacher likes you personally?

5. This teacher likes me better than anyone else in class.
4. This teacher likes me better than most of the other students.
3. This teacher likes me about as much as most of the other students.
2. This teacher likes me less than most/other students in the class.
1. This teacher dislikes me a lot.
WHAT DO YOU THINK OF THIS PUPIL

Name of the Pupil: ..
Class: ..
Teacher's Name: ...
Name of the School: ..

We are interested in obtaining your opinion about this particular student. Will you please check the item as directed.

What are his work habits and study skills.

(A) EFFORTS:
5. Really applies himself with energy - Excellent effort.
4. Tries most of the time - Good effort.
3. Exerts a fair amount of effort.
2. Makes half hearted attempts to work
1. Almost completely lacking in effort

(B) METHOD:
5. Always uses very effective study methods
4. Usually uses rather effective study methods
3. Usually uses fair study methods
2. Usually uses rather ineffective study methods
1. Always uses almost completely ineffective study methods.
(C) WHAT IS HIS CONDUCT IN CLASS?

5. Excellent - cooperates and does everything he can to see that the class goes forward effectively.

4. Usually good and cooperative, although not always.

3. Fluctuates - sometime good and sometime not - about half and half.

2. Usually bad and non-cooperative although not always.

1. Extremely bad - make disturbances - interferes with work of others and so on.

(D) HOW WELL DO YOU LIKE THIS STUDENT PERSONALLY?

5. I like this student extremely well.

4. I like this student better than most of the students I have had.

3. I like this student about as well as most of the students I have had.

2. I like this student less than most students I have had.

1. I have a strong dislike for this student.

(E) WHAT IS YOUR JUDGEMENT AS TO THE QUALITY OF HIS THINKING?

5. Excellent

4. Good

3. Average

2. Fair

1. Poor
(F) HOW WELL IS HE ACCEPTED BY OTHERS?
(Check in each colour)

<table>
<thead>
<tr>
<th></th>
<th>Same age</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Sought by others</td>
<td>..........</td>
<td>..........</td>
</tr>
<tr>
<td>4. Well liked by others</td>
<td>..........</td>
<td>..........</td>
</tr>
<tr>
<td>3. Little noticed by others</td>
<td>..........</td>
<td>..........</td>
</tr>
<tr>
<td>2. Tolerated by others</td>
<td>..........</td>
<td>..........</td>
</tr>
<tr>
<td>1. Avoided by others</td>
<td>..........</td>
<td>..........</td>
</tr>
</tbody>
</table>

(G) HOW WELL BALANCED EMOTIONALLY DOES HE APPEAR TO BE?

5. Usually good balance of responsiveness and control.
4. Usually has a good balance. Only occasionally does he show emotional difficulties.
3. Sometimes shows balance and at other times a lack of it.
2. Frequently show instability, although not always.
1. Very easily and often moved to fits of depression and anger or becomes very unresponsive and apathetic.

(H) WHAT ABOUT THE KNOWLEDGE, ACADEMIC CAREER OF THIS STUDENT?

5. Excellent
4. Good
3. Average
2. Fair
1. Poor
APPENDIX- B

VALIDITY AND RELIABILITY OF THE QUESTIONNAIRE

Calculations of product moment co-efficient of correlation between personal liking of the student and the characteristic - *Amount of knowledge* of the teachers.

\[
\begin{align*}
\bar{X} & = 152 \\
\bar{Y} & = 191 \\
\bar{X}^2 & = 544 \\
\bar{Y}^2 & = 853 \\
\bar{XY}^2 & = 629
\end{align*}
\]

\[
\begin{align*}
\gamma & = \frac{45 \times 629 - 152 \times 191}{\sqrt{\left(45 \times 544 - 152 \times 152 \right) \left(45 \times 853 - 191 \times 191 \right)}} \\
& = -727.7 \\
& \approx 0.449 \\
\end{align*}
\]

* Significant at 1% level.
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking of the students for their teachers and teacher characteristic - Fairness in grading.

\[
\begin{align*}
\bar{X} & = 152 \\
\bar{Y} & = 193 \\
\bar{X}^2 & = 544 \\
\bar{Y}^2 & = 879 \\
\bar{XY} & = 663 \\
\end{align*}
\]

\[
\gamma = \frac{45 \times 663 - 152 \times 193}{\sqrt{45 \times 544 - 152 \times 152} \cdot (45 \times 879 - 193 \times 193)}
\]

\[
= \frac{499}{\sqrt{1379 \cdot 2306}} = 0.280 **
\]

** Significant at 5% level.
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking of students for their teachers and the teacher's characteristic - Amount of learning.

\[
\begin{align*}
\bar{X} & = 152 \\
\bar{Y} & = 152 \\
\sum X^2 & = 544 \\
\sum Y^2 & = 558 \\
\sum XY & = 527 \\
\end{align*}
\]

\[
\begin{align*}
\rho & = \frac{45 \times 527 - 152 \times 152}{\sqrt{(45 \times 544 - 152 \times 152) \times (45 \times 558 - 152 \times 152)}} \\
\rho & = \frac{611}{\sqrt{(1376) \times (2006)}} \\
\rho & = .367 * \\
* & \text{Significant at 1\% level.}
\end{align*}
\]
CALCULATIONS

Showing product co-efficient of correlation between personal liking of students for their teachers and the teachers characteristic - Discipline ability.

\[
\begin{align*}
\bar{X} & = 152 \\
\bar{Y} & = 150 \\
\bar{X}^2 & = 544 \\
\bar{Y}^2 & = 570 \\
\bar{X}\bar{Y} & = 550 \\
\gamma & = \frac{45 \times 550 - 150 \times 152}{\sqrt{(45 \times 544 - 152 \times 152)(45 \times 570 - 150 \times 150)}} \\
\gamma & = \frac{1950}{\sqrt{(1376)(3150)}} = 0.936 \\
\gamma & = 0.936^* \\
* & \text{Significant at 1% level.}
\end{align*}
\]
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking of students for their teachers and the characteristic of the teacher - Subject Interact.

\[\sum x = 152 \]
\[\sum y = 175 \]
\[\sum x^2 = 544 \]
\[\sum y^2 = 750 \]
\[\sum xy = 608 \]

\[r = \frac{45 \times 608 - 152 \times 175}{\sqrt{(1376)(45 \times 750 - 175 \times 175)}} \]

\[r = \frac{760}{\sqrt{(273 \times 644)}} = .366 \]

* Significant at 1% level.
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking of students for their teachers and the teacher's characteristic - Sympathy.

\[r = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left(\sum x^2 - \frac{\left(\sum x \right)^2}{n} \right) \left(\sum y^2 - \frac{\left(\sum y \right)^2}{n} \right)}} \]

\[r = \frac{462}{\sqrt{1376 \times 1854}} \]

\[r = \frac{462}{1597.217} = .2892 \]

** Significant at 5% level.
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking of the students for their teachers and the teachers characteristic - Teacher's utility.

\[r = \frac{45 \times 586 - 152 \times 170}{\sqrt{1376 (45 \times 696 - 170 \times 170)}} \]

\[r = .290 \]

** Significant at 5% level.
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking of students for their teachers and the teacher's characteristics - Planning and Organization.

\[\sum_x = 152 \]
\[\sum_y = 179 \]
\[\sum x^2 = 544 \]
\[\sum y^2 = 758 \]
\[\sum xy = 618 \]

\[r = \frac{45 \times 618 - 152 \times 179}{\sqrt{1376 \left(45 \times 758 - 179 \times 179 \right)}} \]

\[r = \frac{602}{\sqrt{(1376)(2069)}} \]

\[r = 0.356 * \]

* Significant at 1% level.
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking of students for their teachers and the teacher's characteristic - Explaining capability.

\[\begin{align*}
\bar{X} &= 152 \\
\bar{Y} &= 181 \\
\bar{X}^2 &= 544 \\
\bar{Y}^2 &= 779 \\
\bar{XY} &= 627 \\
\end{align*} \]

\[\gamma = \frac{45 \times 627 - 152 \times 181}{\sqrt{1376 (45 \times 779 - 181 \times 181)}} \]

\[\gamma = \frac{703}{\sqrt{(1376)(2294)}} = 0.395 \]

\[\gamma = 0.395^* \]

* Significant at 1% level.
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking and the teacher's characteristic - "Fairness of decision".

\[\sum x = 152 \]
\[\sum y = 177 \]
\[\sum x^2 = 544 \]
\[\sum y^2 = 735 \]
\[\sum xy = 612 \]

\[r = \frac{45 \times 162 - 152 \times 177}{\sqrt{1376 (45 \times 735 - 177 \times 177)}} \]

\[r = \frac{636}{\sqrt{(1376)(1746)}} \]

\[r = \frac{636}{1549.99} \]

\[= .410^* \]

* Significant at 1% level.
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking and the teacher's characteristic - All round ability.

\[\begin{align*}
\sum X &= 152 \\
\sum Y &= 183 \\
\sum X^2 &= 544 \\
\sum Y^2 &= 801 \\
\sum XY &= 636 \\

r &= \frac{45 \times 636 - 152 \times 183}{\sqrt{1376 \left(45 \times 801 - 183 \times 183 \right)}} \\
\Rightarrow &= \frac{804}{\sqrt{(1376) (2556)}} \\
\Rightarrow &= 0.428 * \\
* & \text{Significant at 1% level.}
\end{align*} \]
CALCULATIONS

Showing product moment co-efficient of correlation between personal liking of students for their teachers and the teacher's characteristic - Personal appearance.

\[\sum x = 152 \]
\[\sum y = 202 \]
\[\sum x^2 = 544 \]
\[\sum y^2 = 956 \]
\[\sum xy = 695 \]

\[
\gamma = \frac{45 \times 695 - 152 \times 202}{\sqrt{1376 \times (45 \times 956 - 202 \times 202)}}
\]

\[
\gamma = \frac{571}{\sqrt{(1376) (2216)}}
\]

\[\gamma = 0.326^* \]

= Significant at 1% level.
CALCULATIONS

Showing Product moment co-efficient of correlation between Personal liking of students for their teachers and teachers' characteristic- Shafe Decision.

\[\begin{align*}
\bar{x} &= 152 \\
\bar{y} &= 177 \\
\bar{x}^2 &= 544 \\
\bar{y}^2 &= 751 \\
\bar{xy} &= 602 \\
\end{align*} \]

\[r = \frac{45 \times 602 - 152 \times 177}{\sqrt{1376 \times (45 \times 751 - 177 \times 177)}} \]

\[r = 0.101 \]
CALCULATIONS

Showing Product moment co-efficient of correlation between personal liking of students for their teachers and the teachers characteristic- Freedom of work.

\[\sum x = 151 \]
\[\sum y = 157 \]
\[\sum x^2 = 544 \]
\[\sum y^2 = 641 \]
\[\sum xy = 530 \]

\[r = \frac{45 \times 530 - 152 \times 157}{\sqrt{1376 (45 \times 641 - 157 \times 157)}} \]

\[r = \frac{-14}{\sqrt{1376 \times 4146}} \]

\[r = -0.0058 \]
CALCULATIONS

Showing Product moment co-efficient of correlation between personal liking of the students for their teachers and the teachers characteristic- Concerned about students' problems.

\[
\begin{align*}
\sum x &= 152 \\
\sum y &= 181 \\
\sum x^2 &= 544 \\
\sum y^2 &= 779 \\
\sum xy &= 625 \\
\end{align*}
\]

\[
r = \frac{45 \times 625 - 152 \times 181}{\sqrt{1376 \ (45 \times 779 - 181 \times 181)}}
\]

\[
\gamma = \frac{613}{\sqrt{(1376)(2294)}}
\]

\[
\gamma = 0.345^*
\]

* Significant at 1% level.
CALCULATIONS

Showing Product moment co-efficient of correlation between personal liking of the students for their teachers and the teachers' characteristic—Teachers personal liking for students.

\[\sum x = 152 \]
\[\sum y = 147 \]
\[\sum x^2 = 544 \]
\[\sum y^2 = 507 \]
\[\sum xy = 494 \]

\[r = \frac{45 \times 494 - 152 \times 147}{\sqrt{1376(45 \times 507 - 147 \times 147)}} \]

\[r = \frac{-114}{\sqrt{(1376)(1206)}} \]

\[r = -0.088 \]

\[r = -0.088 \]
CALCULATIONS

Calculations of Product moment co-efficient of correlations between personal liking of the teacher and the characteristic - Efforts of the students.

\[\begin{align*}
\bar{x} & = 158 \\
\bar{y} & = 166 \\
\bar{x}^2 & = 584 \\
\bar{y}^2 & = 631 \\
\bar{x}\bar{y} & = 595 \\
\end{align*} \]

\[
r = \frac{N \bar{x}\bar{y} - \bar{x}\bar{y}}{\sqrt{N \bar{x}^2 - (\bar{x})^2 [N \bar{y}^2 - (\bar{y})^2]}}
\]

\[
r = \frac{45 \times 595 - 158 \times 116}{\sqrt{(45 \times 584 - 158 \times 158) (45 \times 631 - 166 \times 166)}}
\]

\[
r = \frac{547}{1050 \cdot 77} = .520^*
\]

* Significant at 1% level.
CALCULATIONS

Calculations showing Product moment co-efficient of correlations between personal liking of the teachers and the characteristic of the students - Method of Study.

- $\bar{X} = 158$
- $\bar{Y} = 160$
- $\sum X^2 = 584$
- $\sum Y^2 = 587$
- $\sum XY = 580$

$$ r = \frac{45 \times 580 - 158 \times 160}{\sqrt{(45 \times 584 - 158 \times 158) (45 \times 587 - 160 \times 160)}} $$

$$ = \frac{820}{\sqrt{1316}} $$

$$ r = .7917^* $$

* Significant at 1% level.*
CALCULATIONS

Showing Product moment co-efficient of correlations between personal liking of the teachers and the characteristic of the students - Conduct.

\[\begin{align*}
\bar{X} &= 158 \\
\bar{Y} &= 183 \\
\bar{X}^2 &= 584 \\
\bar{Y}^2 &= 775 \\
\bar{XY} &= 659 \\
\end{align*}\]

\[r = \frac{45 \times 659 - 158 \times 183}{\sqrt{(45 \times 584 - 158 \times 158) \times (45 \times 775 - 183 \times 183)}}\]

\[r = \frac{741}{\sqrt{1316 \times 1386}}\]

\[r \neq 0.548^*\]

* Significant at 1% level.
CALCULATIONS

Showing Product moment co-efficient of correlations between personal liking of the teachers and the students characteristic—'Quality of thinking'.

\[EX = 158 \]
\[EY = 162 \]
\[EX^2 = 584 \]
\[EY^2 = 614 \]
\[EXY = 588 \]

\[r = \frac{45 \times 588 - 158 \times 162}{\sqrt{(45 \times 584) - (58 \times 158)} \sqrt{(45 \times 614 - 162 \times 162)}} \]

\[r = \frac{864}{\sqrt{(1316)(1386)}} \]

\[= 0.639^* \]

* Significant at 1% level.
CALCULATIONS

Showing Product moment co-efficient of correlations between teachers' personal liking and students' characteristic - "Social adjustment with Peers".

\[
\begin{align*}
\bar{X} &= 158 \\
\bar{Y} &= 172 \\
\sum X^2 &= 584 \\
\sum Y^2 &= 690 \\
\sum XY &= 617 \\
\end{align*}
\]

\[
r = \frac{45 \times 617 - 158 \times 172}{\sqrt{1316 \times (45 \times 690 - 172 \times 172)}}
\]

\[
r = \frac{589}{\sqrt{1316 \times 1466}}
\]

\[
r = \frac{589}{1388.97}
\]

\[
= .424^*
\]

* Significant at 1% level.
CALCULATIONS

Showing Product moment co-efficient of correlation between teachers' personal liking and student's characteristic - "Social adjustment with adults."

\[r = \frac{45 \times 618 - 158 \times 172}{\sqrt{(45 \times 584 - 158 \times 158) (45 \times 690 \times 172 \times 172)}} \]

\[= \frac{634}{\sqrt{1316 \times 1460}} \]

\[= \frac{634}{1388.97} \]

\[= .456^* \]

* Significant at 1% level.
CALCULATIONS

Showing Product moment co-efficient of correlations between teacher's personal liking and student's characteristic- "Emotionally balance".

\[
\begin{align*}
\sum x &= 158 \\
\sum y &= 191 \\
\sum x^2 &= 584 \\
\sum y^2 &= 837 \\
\sum xy &= 679 \\
\end{align*}
\]

\[
r = \frac{45 \times 679 - 158 \times 191}{\sqrt{1316 \times (45 \times 837 - 191 \times 191)}}
\]

\[
r = \frac{377}{\sqrt{1316 \times 1184}}
\]

\[
= \frac{377}{1248.256} = .302^*
\]

* Significant at 1% level.
CALCULATIONS

Showing Product moment co-efficient of correlation between teacher's personal liking and student's characteristic- Knowledge and academic career.

\[\begin{align*}
\bar{X} &= 158 \\
\bar{Y} &= 151 \\
\bar{X}^2 &= 584 \\
\bar{Y}^2 &= 551 \\
\bar{XY} &= 545 \\
\end{align*} \]

\[r = \frac{45 \times 545 - 158 \times 151}{\sqrt{1316 \times (45 \times 551 - 151 \times 151)}} \]

\[r = \frac{667}{\sqrt{1316 \times 1994}} \]

\[= \frac{667}{1619.9} \]

\[= 0.411^* \]

* Significant at 1% level.
CALCULATIONS OF RELIABILITY OF THE TEST

Teacher's Form:

\[
\begin{align*}
X^2 &= 941.195 \\
Y^2 &= 575.187 \\
XY &= 718.917 \\
r &= \frac{\sum XY}{\sqrt{\sum X^2 \times \sum Y^2}} = \frac{718.917}{735.7739} \\
&= 0.9770895 \\
r_{tt} &= 2 \left(r \right)^{\frac{1}{2}} \\
&= 1 + r^{\frac{1}{2}} \\
r_{tt} &= 0.988412
\end{align*}
\]

Pupil's Form:

\[
\begin{align*}
r &= \frac{\sum XY}{\sqrt{\sum X^2 \times \sum Y^2}} = \frac{329.68}{493.09 \times 229.825} \\
r &= 0.979 \\
r_{tt} &= \frac{0.9793 \times 2}{1 + 0.9793} \\
r_{tt} &= 0.9895
\end{align*}
\]
null hypothesis and calculations
Hypothesis:

There is no significant difference between the amount of knowledge of the teachers of the public school (A) and the teachers of non public school (C).

Calculations

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public School</td>
<td>f</td>
<td>49</td>
<td>63</td>
<td>52</td>
<td>15</td>
</tr>
<tr>
<td>(n_1 = 185)</td>
<td>cf</td>
<td>0.2648</td>
<td>0.6053</td>
<td>0.8871</td>
<td>0.9681</td>
</tr>
<tr>
<td>Non public School</td>
<td>f</td>
<td>213</td>
<td>34</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>(n_2 = 273)</td>
<td>cf</td>
<td>0.7802</td>
<td>0.9047</td>
<td>0.9926</td>
<td>0.9929</td>
</tr>
<tr>
<td>D</td>
<td>-0.515</td>
<td>-0.2994</td>
<td>-0.1055</td>
<td>-0.0248</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum value of \(D = 0.515 \)

\[
D^2 = 0.2652 \\
\chi^2 = 4 \cdot D^2 \cdot \frac{n_1 \cdot n_2}{n_1 + n_2} \\
\chi^2 = 4 \cdot 0.2652 \cdot 110.272 \\
= 441.088 \cdot 0.2652 \\
\chi^2 = 116.976
\]

Significant

Average ratings (Public School) = 3.72
Average Ratings (Private School) = 4.67
FAIRNESS IN GRADING

Hypothesis:

There is no significant difference between the fairness of grading of the teachers of public schools (A) and the teachers of non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>69</td>
<td>57</td>
<td>43</td>
<td>15</td>
</tr>
<tr>
<td>n = 185</td>
<td>cf</td>
<td>.372</td>
<td>.680</td>
<td>.94</td>
<td>.995</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td>f</td>
<td>229</td>
<td>16</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>n = 273</td>
<td>cf</td>
<td>.838</td>
<td>.866</td>
<td>.966</td>
<td>.955</td>
</tr>
</tbody>
</table>

\[D = -0.466 \quad -0.186 \quad -0.052 \quad 0 \quad 0 \]

Maximum Value of \(D \) = 0.466

\[D^2 = 0.217 \]

\[\chi^2 = 4D^2 = 4D^2 \times \frac{n_1 \times n_2}{n_1 + n_2} \]

\[\chi^2 = 441.088 \times 0.217 \]

\[\chi^2 = 95.716 \quad \text{Significant} \]

Average Ratings (Public School) = 3.96

Average Ratings (Non Public) = 4.69
PERSONAL LIKING

Hypothesis:
There is no significant difference between the personal liking of the students for their teachers in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>45</td>
<td>51</td>
<td>69</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>n = 185</td>
<td>cf</td>
<td>.243</td>
<td>.518</td>
<td>.891</td>
<td>.967</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>76</td>
<td>43</td>
<td>145</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>n = 273</td>
<td>cf</td>
<td>.278</td>
<td>.435</td>
<td>.966</td>
<td>.988</td>
</tr>
</tbody>
</table>

D 0.035 0.083 0.075 0.021 0

Maximum Value of D = 0.083

\[D^2 = 0.0068 \]

\[\chi^2 = 4D^2 \times \frac{n_1 \times n_2}{n_1 + n_2} \]

\[\chi^2 = 441.088 \times 0.0068 \]

\[\chi^2 = 2.999 \text{ Insignificant} \]

Average Ratings (Public Schools) = 3.62

Average Ratings (Non Public Schools) = 3.67
LEARNING

Hypothesis:
There is no significant difference between the amount of learning of the students from the teachers in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public School</td>
<td>f</td>
<td>26</td>
<td>59</td>
<td>66</td>
<td>26</td>
</tr>
<tr>
<td>n = 185</td>
<td>cf</td>
<td>.140</td>
<td>.459</td>
<td>.816</td>
<td>.956</td>
</tr>
<tr>
<td>Non Public School</td>
<td>f</td>
<td>77</td>
<td>43</td>
<td>145</td>
<td>6</td>
</tr>
<tr>
<td>n = 273</td>
<td>cf</td>
<td>.282</td>
<td>.439</td>
<td>.970</td>
<td>.992</td>
</tr>
</tbody>
</table>

\[
D = 0.142, 0.02, 0.154, 0.036, 0
\]

Maximum Value of \(D' \) = 0.154

\[
D^2 = 0.0237
\]

\[
\chi^2 = 4D^2 \times \frac{n_1 n_2}{n_1 + n_2}
\]

\[
\chi^2 = 0.0237 \times 441.088
\]

\[
\chi^2 = 10.453 \text{ Significant}
\]

Average Ratings (Public School) = 3.372

Average Ratings (Non Public) = 3.68
PERSONAL APPEARANCE

Hypothesis:

There is no significant difference of the teacher's characteristics personal appearance in public schools (A) and non public schools (C).

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>110</td>
<td>42</td>
<td>25</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>n = 185</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>cf</td>
<td>.594</td>
<td>.821</td>
<td>.956</td>
<td>.978</td>
<td>1.00</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>212</td>
<td>43</td>
<td>13</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>n = 273</td>
<td>273</td>
<td>273</td>
<td>273</td>
<td>273</td>
<td>273</td>
</tr>
<tr>
<td>D</td>
<td>.182</td>
<td>.113</td>
<td>.025</td>
<td>.014</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .182

\[
D^2 = .0331
\]

\[
\chi^2 = 4D^2 \times \frac{n_1 \times n_2}{n_1 + n_2}
\]

\[
\chi^2 = 4 \times .0331 \times \frac{185 \times 273}{185 + 273}
\]

Average Rating of (PUB) = 4.35

Average Rating of (Non-PUB) = 4.68
DISCIPLINE

Hypothesis:
There is no significant difference in the classroom discipline in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>24</td>
<td>60</td>
<td>68</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>cf</td>
<td>.129</td>
<td>.453</td>
<td>.820</td>
<td>.939</td>
<td>1.00</td>
</tr>
<tr>
<td>Non Public School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>70</td>
<td>56</td>
<td>118</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>cf</td>
<td>.256</td>
<td>.461</td>
<td>.893</td>
<td>.948</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.127</td>
<td>.008</td>
<td>.073</td>
<td>.008</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of $D = \chi^2$ $D^2 = \frac{.127}{0.016}$

$$\chi^2 = 4D^2 \times \frac{n_1 \times n_2}{n_1 + n_2}$$

$$\chi^2 = 7.0574 \text{ Insignificant}$$

Average Ratings (Public Schools) = 3.34

Average Ratings (Non-Public Schools) = 3.56
SYMPATHY

Hypothesis:
There is no difference in the sympathetic attitude of teacher towards their pupils in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td>f</td>
<td>48</td>
<td>79</td>
<td>45</td>
<td>11</td>
</tr>
<tr>
<td>Schools</td>
<td>n = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf</td>
<td>.259</td>
<td>.686</td>
<td>.929</td>
<td>.989</td>
<td>1.00</td>
</tr>
<tr>
<td>Non Public</td>
<td>f</td>
<td>155</td>
<td>99</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Schools</td>
<td>n = 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf</td>
<td>.567</td>
<td>.930</td>
<td>.967</td>
<td>.992</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.308</td>
<td>.244</td>
<td>.038</td>
<td>.003</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of \(D \) = .308

\[D^2 = 0.0948 \]

\[\chi^2 = 4D^2 \times \frac{n_1 \cdot n_2}{n_1 + n_2} \]

\[\chi^2 = 0.0948 \times 441.088 \]

\[\chi^2 = 41.815 \text{ Significant} \]

Average Ratings (Public Schools) = 3.86
Average Ratings (Private Schools) = 4.45
SUBJECT INTEREST

Hypothesis:

There is no significant difference between the subject interest of the pupils in public school (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n =185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf</td>
<td>.189</td>
<td>.524</td>
<td>.880</td>
<td>.972</td>
<td>1.00</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf</td>
<td>.293</td>
<td>.842</td>
<td>.985</td>
<td>.995</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.104</td>
<td>.318</td>
<td>.105</td>
<td>0.023</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .318

\[D^2 = 0.101 \]

\[\chi^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2} \]

\[\chi^2 = 441.088 \times 0.101 \]

\[\chi^2 = 44.54 \text{ Significant} \]

Average Ratings (Public Schools) = 3.56

Average Ratings (Non-Public Schools) = 4.11
STUDENT'S DECISION ABOUT TEACHER'S USEFULNESS

Hypothesis:

There is no significant difference between the student's decision about teacher's usefulness in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>38</td>
<td>71</td>
<td>55</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>cf</td>
<td>.205</td>
<td>.589</td>
<td>.886</td>
<td>.983</td>
<td>1.00</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>142</td>
<td>83</td>
<td>36</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>cf</td>
<td>.520</td>
<td>.824</td>
<td>.956</td>
<td>.985</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[D = 0.315 \]

\[D^2 = 0.0992 \]

\[\chi^2 = 4D^2 \times \frac{n_1 n_2}{n_1 + n_2} \]

\[\chi^2 = 0.0992 \times 441.088 \]

\[\chi^2 = 43.755 \text{ Significant} \]

Average Ratings (Public Schools) = 3.66

Average Ratings (Non Public Schools) = 4.28
CLEAR EXPLANATION

Hypothesis:

There is no significant difference between the ability of teacher to explain things clearly in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>62</td>
<td>66</td>
<td>47</td>
<td>7</td>
</tr>
<tr>
<td>$n = 185$</td>
<td>cf</td>
<td>.335</td>
<td>.691</td>
<td>.945</td>
<td>.983</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td>f</td>
<td>163</td>
<td>75</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>$n = 273$</td>
<td>cf</td>
<td>.597</td>
<td>.871</td>
<td>.937</td>
<td>.974</td>
</tr>
<tr>
<td>D</td>
<td>.262</td>
<td>.18</td>
<td>.008</td>
<td>.009</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .262

$D^2 = .0686$

$\chi^2 = 4D^2 \times \frac{n_1}{n_1 + n_2}$

$\chi^2 = 4 \times .0686 \times \frac{185 \times 273}{185 + 273}$

$\chi^2 = .0686 \times 441.088$

$\chi^2 = 30.258$ Significant

Average Ratings (PUB) = 3.95

Average Ratings (Non-PUB) = 4.38
FAIRNESS IN DECISION

Hypothesis:

There is no significant difference between the fairness of decision of the teachers for the students in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>0</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>55</td>
<td>57</td>
<td>59</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(n = 185)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cf)</td>
<td>.297</td>
<td>.605</td>
<td>.924</td>
<td>.978</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Non Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>162</td>
<td>83</td>
<td>15</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(n = 273)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cf)</td>
<td>.593</td>
<td>.897</td>
<td>.952</td>
<td>.992</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(D)</td>
<td>.296</td>
<td>.292</td>
<td>.028</td>
<td>.014</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Value of \(D \) = .296

\[
D^2 = 0.0876
\]

\[
\chi^2 = 4D^2 \times \frac{n_1 \ n_2}{n_1 + n_2} = 4 \times 0.0876 \times \frac{185 \times 273}{185 + 273}
\]

\[
\chi^2 = 441.088 \times 0.0876 = 38.64 \text{ Significant}
\]

Average Ratings (PUB) = 3.805

Average Ratings (Non-PUB) = 4.43
PLANNING

Hypothesis:

There is no significant difference between the ability to assist students in planning and organizing classroom work in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>31</td>
<td>86</td>
<td>56</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>n = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf</td>
<td>.167</td>
<td>.632</td>
<td>.935</td>
<td>.994</td>
<td>1.00</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>114</td>
<td>75</td>
<td>68</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>n = 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf</td>
<td>.417</td>
<td>.692</td>
<td>.941</td>
<td>.978</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.25</td>
<td>.06</td>
<td>.006</td>
<td>.016</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .25

\[
\chi^2 = 4D^2 \times \frac{n \times n}{n + n}
\]

\[
\chi^2 = 4 \times 0.0625 \times \frac{185 \times 273}{185 + 273}
\]

\[
\chi^2 = 0.0625 \times 441.088
\]

\[
\chi = 27.568 \text{ Significant}
\]

Average Ratings (PUB) = 3.73

Average Ratings (Non-PUB) = 4.02
Hypothesis:

There is no significant difference between the all round ability of teachers of public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>43</td>
<td>61</td>
<td>77</td>
<td>3</td>
</tr>
<tr>
<td>n = 185</td>
<td>cf</td>
<td>.232</td>
<td>.562</td>
<td>.978</td>
<td>.994</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td>f</td>
<td>197</td>
<td>39</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>n = 273</td>
<td>cf</td>
<td>.721</td>
<td>.864</td>
<td>.974</td>
<td>.989</td>
</tr>
<tr>
<td>D</td>
<td>.489</td>
<td>.302</td>
<td>.004</td>
<td>.005</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .489

\[D^2 = 0.239 \]

\[x^2 = 2 \cdot n_1 \cdot n_2 \]

\[x^2 = 4 \cdot 0.239 \cdot \frac{185 \times 273}{185 + 273} \]

\[x^2 = 105.420 \text{ Significant} \]

Average Ratings (PUB) = 3.767

Average Ratings (Non-PUB) = 4.549
SHARE DECISION

Hypothesis:

There is no significant difference between the sharing decision of the teacher with their pupils in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schools</td>
<td>f</td>
<td>50</td>
<td>55</td>
<td>50</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>n = 185</td>
<td>cf .270 .567 .837 .934 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non Public</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schools</td>
<td>f</td>
<td>143</td>
<td>40</td>
<td>56</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>n = 273</td>
<td>cf .523 .670 .875 .945 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>.253</td>
<td>.103</td>
<td>.038</td>
<td>.011</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .253

\[D^2 = \frac{n_1 n_2}{n_1 + n_2} \]

\[\chi^2 = 4D^2 \times \frac{n_1 n_2}{n_1 + n_2} \]

\[\chi^2 = 4 \times .064 \times \frac{185 \times 273}{185 + 273} \]

\[\chi^2 = 441.088 \times .064 \]

\[\chi^2 = 28.23 \text{ Significant} \]

Average Ratings (PUB) = 3.61

Average Ratings (Non-PUB) = 4.01
FREEDOM OF WORK

Hypothesis:

There is no significant difference between the "freedom of work" in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>38</td>
<td>64</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>n = 185</td>
<td>cf</td>
<td>.205</td>
<td>.551</td>
<td>.745</td>
<td>.972</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td>f</td>
<td>106</td>
<td>48</td>
<td>22</td>
<td>65</td>
</tr>
<tr>
<td>n = 273</td>
<td>cf</td>
<td>.388</td>
<td>.564</td>
<td>.644</td>
<td>.882</td>
</tr>
<tr>
<td>D</td>
<td>.183</td>
<td>.013</td>
<td>.101</td>
<td>.090</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .183

D^2 = .0334

$\chi^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2}$

$\chi^2 = 4 \times .0334 \frac{185 \times 273}{185 + 273}$

$\chi^2 = 441.088 \times .0334$

$\chi^2 = 14.73$ Significant

Av. Ratings (PUB) = 3.475

Av. Ratings (Non-PUB) = 3.471
TEACHER'S CONCERN

Hypothesis:

There is no significant difference in teacher's concern about their pupils' problem in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>50</td>
<td>64</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>n = 185</td>
<td>cf</td>
<td>.270</td>
<td>.616</td>
<td>.859</td>
<td>.967</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td>f</td>
<td>211</td>
<td>25</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>n = 273</td>
<td>cf</td>
<td>.772</td>
<td>.864</td>
<td>.926</td>
<td>.974</td>
</tr>
<tr>
<td>D</td>
<td>0.502</td>
<td>0.248</td>
<td>0.067</td>
<td>0.08</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.502

\[D^2 = 0.252 \]

\[\chi^2 = 4D^2 \times \frac{n_1 \cdot n_2}{n_1 + n_2} \]

\[\chi^2 = 4 \times 0.252 \times \frac{185 \times 273}{185 + 273} = 111.153 \text{ Significant} \]

Average Ratings (PUB) = 3.713

Average Ratings (Non-PUB) = 4.538
PUBLIC SCHOOL Vs. PRIVATE SCHOOL STUDENTS' OPINION ABOUT LIKING OF TEACHERS TOWARD STUDENT

Hypothesis:
There is no significant difference between the personal liking of students for their teachers in public schools (A) and non public schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>16</td>
<td>49</td>
<td>108</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>cf</td>
<td>.086</td>
<td>.351</td>
<td>.934</td>
<td>.988</td>
<td>1.00</td>
</tr>
<tr>
<td>Non Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>28</td>
<td>17</td>
<td>224</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>cf</td>
<td>.102</td>
<td>.164</td>
<td>.985</td>
<td>.992</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.016</td>
<td>.187</td>
<td>.051</td>
<td>.004</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.187

\[D^2 = 0.0349 \]

\[\chi^2 = 4D^2 \times \frac{n_1 n_2}{n_1 + n_2} \]

\[\chi^2 = 4 \times 0.0349 \times \frac{185 \times 273}{185 + 273} \]

\[\chi^2 = 441.088 \times 0.0349 \]

\[\chi^2 = 15.393 \text{ Significant} \]
Hypothesis:

There is no significant difference between the effort of students rated by the teachers of public schools (A) and non public single sexed schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Public Schools (Single-Sexed)</td>
<td>f</td>
<td>64</td>
<td>94</td>
<td>95</td>
<td>19</td>
</tr>
<tr>
<td>n₁ = 273</td>
<td>cᵢ</td>
<td>0.234</td>
<td>0.578</td>
<td>0.926</td>
<td>0.996</td>
</tr>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>22</td>
<td>66</td>
<td>79</td>
<td>16</td>
</tr>
<tr>
<td>n₂ = 185</td>
<td>cᵢ</td>
<td>0.118</td>
<td>0.474</td>
<td>0.898</td>
<td>0.984</td>
</tr>
<tr>
<td>D</td>
<td>0.116</td>
<td>0.104</td>
<td>0.028</td>
<td>0.012</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.116

\[D^2 = 0.01345 \]

\[\chi^2 = 4D^2 \times \frac{n_1 \cdot n_2}{n_1 + n_2} \]

\[\chi^2 = 4 \times 0.01345 \times \frac{273 \times 185}{273 + 185} \]

\[\chi^2 = 4 \times 110.272 \times 0.01345 \]

\[\chi^2 = 5.910 \quad \text{Insignificant} \]

Average Ratings (Non-PUB) = 3.736

Average Ratings (PUB) = 3.48
Hypothesis:

There is no significant difference between the study method of the students of public schools (A) and non public single sexed school (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Public Schools</td>
<td>f</td>
<td>41</td>
<td>130</td>
<td>89</td>
<td>12</td>
</tr>
<tr>
<td>(\mathcal{H}_1) = 273</td>
<td>(\mathcal{c}_f)</td>
<td>0.150</td>
<td>0.626</td>
<td>0.952</td>
<td>0.995</td>
</tr>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>26</td>
<td>50</td>
<td>95</td>
<td>12</td>
</tr>
<tr>
<td>(\mathcal{n}_2) = 185</td>
<td>(\mathcal{c}_f)</td>
<td>0.139</td>
<td>0.409</td>
<td>0.919</td>
<td>0.983</td>
</tr>
<tr>
<td>D</td>
<td>0.011</td>
<td>0.27</td>
<td>0.033</td>
<td>0.012</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.27

\[D^2 = 0.072 \]

\[\chi^2 = 4D^2 \times \frac{n_1}{n_1 + n_2} \]

\[\chi^2 = 110.272 \times 4 \times 0.072 \]

\[\chi^2 = 441.088 \times 0.072 \]

\[\chi^2 = 31.75 \text{ Significant} \]

Average Ratings (Non-PUB) = 3.72

Average Ratings (PUB) = 3.46
Hypothesis:
There is no significant difference between the conduct of students of the public schools (A) and non public single sexed schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Public Schools (Single-Sexed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n₁ = 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c₁</td>
<td>.289</td>
<td>.842</td>
<td>.981</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n₂ = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c₂</td>
<td>.462</td>
<td>0.743</td>
<td>0.941</td>
<td>0.989</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>-0.173</td>
<td>0.099</td>
<td>0.040</td>
<td>0.011</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.173
D² = 0.029
χ² = 4D² x \(\frac{n₁ \cdot n₂}{n₁ + n₂} \)
χ² = 441.088 x 0.029
χ² = 12.79 Significant

Average Ratings = 4.11
Average Ratings (PUB) = 4.15
Hypothesis:
There is no significant difference between the quality of thinking of students in public schools (A) and non public single sexed schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n₁ = 273</td>
<td>f</td>
<td>42</td>
<td>121</td>
<td>61</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>c₁</td>
<td>0.150</td>
<td>0.595</td>
<td>0.819</td>
<td>0.976</td>
</tr>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n₂ = 185</td>
<td>f</td>
<td>21</td>
<td>70</td>
<td>77</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>c₁</td>
<td>0.113</td>
<td>0.491</td>
<td>0.907</td>
<td>0.971</td>
</tr>
</tbody>
</table>

\[
\text{Maximum Value of } D = 0.104 \\
D^2 = 0.0103 \\
\chi^2 = 441.088 \times 0.0103 \\
\chi^2 = 4.763 \text{ Insignificant}
\]

Average Ratings (Non-Public) = 3.55
Average Ratings (PUB) = 3.48
Hypothesis:
There is no significant difference between the personal liking of teachers for their students in public schools (A) and non-public single sexed schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Public Schools</td>
<td>f</td>
<td>94</td>
<td>74</td>
<td>99</td>
<td>6</td>
</tr>
<tr>
<td>(n_1) = 273</td>
<td>c_f</td>
<td>0.344</td>
<td>0.615</td>
<td>0.977</td>
<td>1.00</td>
</tr>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>53</td>
<td>45</td>
<td>77</td>
<td>9</td>
</tr>
<tr>
<td>(n_2) = 185</td>
<td>c_f</td>
<td>0.284</td>
<td>0.531</td>
<td>0.945</td>
<td>0.993</td>
</tr>
<tr>
<td>D</td>
<td>0.06</td>
<td>0.084</td>
<td>0.032</td>
<td>0.007</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.084

\[D^2 = 0.007 \]

\[\chi^2 = 441.088 \times 0.007 \]

\[\chi^2 = 3.087 \text{ Insignificant} \]

Average Ratings (Non Public) = 3.93

Average Ratings (Public) = 3.75
SOCIAL ADJUSTMENT (PEERS)

Hypothesis:
There is no significant difference between the social adjustment of pupils with peers in public schools (A) and non-public single sexed schools (C).

Calculations

<table>
<thead>
<tr>
<th>Schools</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Single-sexed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_1 = 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>73</td>
<td>179</td>
<td>12</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>c_f</td>
<td>0.267</td>
<td>0.922</td>
<td>0.965</td>
<td>0.9915</td>
<td>1.00</td>
</tr>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_2 = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>33</td>
<td>86</td>
<td>36</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>c_f</td>
<td>0.178</td>
<td>0.642</td>
<td>0.836</td>
<td>0.988</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>0.0893</td>
<td>0.28</td>
<td>0.129</td>
<td>0.003</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.28

D^2 = 0.0784

\[\chi^2 = 441.088 \times 0.0784 \]

\[\chi^2 = 34.58 \text{ Significant} \]

Average Ratings (Non-Public) = 4.15

Average Ratings (Public) = 3.64
SOCIAL ADJUSTMENT (ADULT)

Hypothesis:
There is no significant difference between the social adjustment of the pupils with adults in public schools (A) and non-public single sexed schools (C).

 CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Public</td>
<td>f</td>
<td>71</td>
<td>181</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>n1 = 273</td>
<td>c_f</td>
<td>.2600</td>
<td>.923</td>
<td>.963</td>
<td>.992</td>
</tr>
<tr>
<td>Public</td>
<td>f</td>
<td>26</td>
<td>92</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>n2 = 185</td>
<td>c_f</td>
<td>.140</td>
<td>0.637</td>
<td>0.82</td>
<td>0.976</td>
</tr>
<tr>
<td>D</td>
<td>.12</td>
<td>0.286</td>
<td>.143</td>
<td>.016</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.286
D^2 = 0.00817
\chi^2 = 441.088 x 0.00817
\chi^2 = 36.036 Significant
Average Rating (Non-Public) = 4.139
Average Rating (Public) = 3.578
EMOTIONAL STABILITY

Hypothesis:
There is no significant difference between the characteristics like emotional stability in public schools (A) and non-Public single sexed schools (C).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Public Schools</td>
<td>130</td>
<td>100</td>
<td>41</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>n₁ = 273</td>
<td>c₁</td>
<td>0.476</td>
<td>0.8423</td>
<td>0.992</td>
<td>1.00</td>
</tr>
<tr>
<td>Public-Schools</td>
<td>94</td>
<td>43</td>
<td>43</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>n₂ = 185</td>
<td>c₂</td>
<td>0.508</td>
<td>0.740</td>
<td>0.972</td>
<td>0.994</td>
</tr>
<tr>
<td>D = -0.0321</td>
<td>0.1018</td>
<td>0.0195</td>
<td>0.0055</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.1018

\[D^2 = 0.01036 \]

\[\chi^2 = 441.088 \times 0.01036 \]

\[\chi^2 = 4.5690 \]

Average Ratings (Non-Public) = 4.31
Average Ratings (Public) = 4.20
KNOWLEDGE AND CAREER

Hypothesis:
There is no significant difference between the knowledge and career of the students of public schools (A) and non-public single sexed schools (C).

CALCULATIONS.

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Public Schools</td>
<td>f</td>
<td>57</td>
<td>133</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>(n_1 = 273)</td>
<td>c_f</td>
<td>.208</td>
<td>.695</td>
<td>.841</td>
<td>.972</td>
</tr>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>24</td>
<td>58</td>
<td>87</td>
<td>12</td>
</tr>
<tr>
<td>(n_2 = 185)</td>
<td>c_f</td>
<td>.129</td>
<td>.44</td>
<td>.91</td>
<td>.974</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccc}
D & 0.079 & 0.255 & -0.069 & -0.0028 & 0 \\
\end{array}
\]

Maximum Value of \(D \) = 0.255

\[
D^2 = 0.0573
\]

\[
\chi^2 = 441 \times 0.088 \times 0.0573
\]

\[
\chi^2 = 25.274 \text{ Significant}
\]

Average Ratings (Non-Public) = 3.72
Average Ratings (Public) = 3.46
Hypothesis:

There is no significant difference between the amount of knowledge of the teachers of public schools (A) and the teachers of co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>49</td>
<td>63</td>
<td>52</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>$n_1 = 185$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_f</td>
<td>.2648</td>
<td>.6053</td>
<td>.8871</td>
<td>.9681</td>
<td>1.00</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>184</td>
<td>15</td>
<td>20</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>$n_2 = 225$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_f</td>
<td>.8177</td>
<td>.884</td>
<td>.973</td>
<td>.995</td>
<td>1.00</td>
</tr>
</tbody>
</table>

$D = \frac{5529}{2787}$, Significant

Average Ratings (PUB) = 3.72

Average Ratings (COED.) = 4.67
FAIRNESS IN GRADING

Hypothesis:
There is no significant difference between the fairness of grading of the teachers of public schools (A) and the teachers of co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>69</td>
<td>57</td>
<td>43</td>
<td>15</td>
</tr>
<tr>
<td>n₁ = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_f</td>
<td>.372</td>
<td>.680</td>
<td>.914</td>
<td>.995</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td>f</td>
<td>185</td>
<td>14</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>n₂ = 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_f</td>
<td>.822</td>
<td>.884</td>
<td>.973</td>
<td>.990</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>.45</td>
<td>.204</td>
<td>.059</td>
<td>.005</td>
</tr>
</tbody>
</table>

Maximum Value of D = .45

\[D^2 = .02025 \]

\[\chi^2 = 4D^2 \frac{n₁ \cdot n₂}{n₁ + n₂} \]

\[\chi^2 = 406.09 \]

\[\chi^2 = 82.233 \text{ Significant} \]

Average Ratings (PUB) = 3.96

Average Ratings (COED) = 4.67
PERSONAL LIKING

Hypothesis:

There is no significant difference between the personal liking of students for their teachers in public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>45</td>
<td>51</td>
<td>69</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>n₁ = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf</td>
<td>.243</td>
<td>.518</td>
<td>.891</td>
<td>.967</td>
<td>1.00</td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>67</td>
<td>28</td>
<td>125</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>n₂ = 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf</td>
<td>.297</td>
<td>.422</td>
<td>.977</td>
<td>.99</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.044</td>
<td>.096</td>
<td>.086</td>
<td>.023</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .096

\[
D^2 = .0092
\]

\[
\chi^2 = 4D^2 \times \frac{n_1 \cdot n_2}{n_1 + n_2}
\]

\[
\chi^2 = 406.09 \times .0092
\]

\[
\chi^2 = 3.736 \text{ Insignificant}
\]

Average Ratings (PUB) = 3.62

Average Ratings (COED.) = 3.68
LEARNING

Hypothesis:

There is no significant difference between the amount of learning of the students from their teachers in public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n₁ = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>26</td>
<td>59</td>
<td>66</td>
<td>26</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>cᵢ₁</td>
<td>.14</td>
<td>.459</td>
<td>.816</td>
<td>.956</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n₂ = 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>44</td>
<td>48</td>
<td>113</td>
<td>13</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>cᵢ₂</td>
<td>.195</td>
<td>.408</td>
<td>.911</td>
<td>.968</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>.055</td>
<td>.051</td>
<td>.095</td>
<td>.012</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Value of D

\[D = \sqrt{4D^2 \frac{n_1 n_2}{n_1 + n_2}} \]

\[D^2 = 0.00902 \]

\[x^2 = 406.09 \times 0.00902 = 3.662 \text{ Insignificant} \]

Average Ratings (PUB) = 3.37

Average Ratings (COED.) = 3.48
PERSONAL APPEARANCE

Hypothesis:
There is no significant difference of the teachers' characteristics personal appearance in public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>110</td>
<td>42</td>
<td>25</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$n_1 = 185$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_f</td>
<td>.594</td>
<td>.821</td>
<td>.956</td>
<td>.978</td>
<td>1.00</td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>180</td>
<td>32</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$n_2 = 225$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_f</td>
<td>.80</td>
<td>.942</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.206</td>
<td>.121</td>
<td>.044</td>
<td>.022</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .206

$D^2 = .0424$

$\chi^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2}$

$\chi^2 = 4 \times .0424 \frac{185 \times 225}{185 + 225}$

$\chi^2 = 406.09 \times .0424$

$\chi^2 = 17.218$ Significant

Average Ratings (PUB) = 4.35
Average Ratings (COED) = 4.74
DISCIPLINE

Hypothesis:

There is no significant difference in classroom discipline in public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>24</td>
<td>60</td>
<td>68</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>n₁ = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cᵢ</td>
<td>.129</td>
<td>.453</td>
<td>.820</td>
<td>.939</td>
<td>1.00</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>75</td>
<td>34</td>
<td>90</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>n₂ = 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cᵢ</td>
<td>.333</td>
<td>.484</td>
<td>.884</td>
<td>.919</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.204</td>
<td>.031</td>
<td>.064</td>
<td>.020</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .204

D² = .0416

\[
\chi^2 = 4D^2 \cdot \frac{n_1 \cdot n_2}{n_1 + n_2}
\]

\[
\chi^2 = 406.09 \times .0416
\]

\[
\chi^2 = 16.893 \text{ Significant}
\]

Average Ratings (PUB) = 3.34

Average Ratings (COED) = 3.62
SUBJECT INTEREST

Hypothesis:

There is no significant difference between the subject interest of pupils in public schools students (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_1 = 185$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_f</td>
<td>.189</td>
<td>.524</td>
<td>.880</td>
<td>.972</td>
<td>1.00</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td>f</td>
<td>83</td>
<td>108</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>$n_2 = 225$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_f</td>
<td>.368</td>
<td>.848</td>
<td>.973</td>
<td>.995</td>
<td>1.00</td>
</tr>
</tbody>
</table>

| D | .179 | .324 | .093 | .0234 | 0 |

Maximum Value of D^2 = .324

$D^2 = .1049$

$\chi^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2}$

$\chi^2 = 4 \times .1049 \times \frac{185 \times 225}{185 + 225}$

$\chi^2 = 406.09 \times .1049$

$\chi^2 = 42.598$ Significant

Average Ratings (PUB$)$ = 3.56

Average Ratings (COED.) = 4.18
Hypothesis:
There is no significant difference between the sympathetic attitude of teachers of public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>48</td>
<td>79</td>
<td>45</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>n₁ = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cᵢ</td>
<td>.259</td>
<td>.686</td>
<td>.929</td>
<td>.989</td>
<td>1.00</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>137</td>
<td>72</td>
<td>10</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>n₂ = 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cᵢ</td>
<td>.608</td>
<td>.928</td>
<td>.973</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.349</td>
<td>.242</td>
<td>.044</td>
<td>.011</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .349

\[D^2 = .1218 \]

\[\chi^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2} \]

\[\chi^2 = \frac{4 \times .1218 \times 185 \times 225}{185 + 225} \]

\[\chi^2 = 406.09 \times .1218 \]

\[\chi^2 = 49.46 \text{ Significant} \]

Average Ratings (PUB) = 3.86
Average Ratings (COED) = 4.51
Hypothesis:
There is no significant difference between classroom decision taken by the teachers of public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_1 = 185)</td>
<td>f</td>
<td>38</td>
<td>71</td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>(c_f)</td>
<td>(.205)</td>
<td>(.589)</td>
<td>(.886)</td>
<td>(.983)</td>
<td>(1.00)</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td>f</td>
<td>106</td>
<td>55</td>
<td>47</td>
<td>10</td>
</tr>
<tr>
<td>(n_2 = 225)</td>
<td>(c_f)</td>
<td>(.471)</td>
<td>(.715)</td>
<td>(.924)</td>
<td>(.968)</td>
</tr>
<tr>
<td>D</td>
<td>(.266)</td>
<td>(.126)</td>
<td>(.038)</td>
<td>(.015)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Maximum Value of \(D \) = \(.266 \)

\[
D^2 = 0.0707
\]

\[
\chi^2 = 4D^2 \frac{n_1 \cdot n_2}{n_1 + n_2}
\]

\[
\chi^2 = 4 \times 0.0707 \times \frac{225 \times 185}{225 + 185}
\]

\[
\chi^2 = 406.09 \times 0.0707
\]

\[
\chi^2 = 28.7105 \text{ Significant}
\]

Average Ratings (PUB) = 3.66
Average Ratings (COED.) = 4.08
Hypothesis:

There is no significant difference between the ability to assist students in planning and organizing classroom work in public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>31</td>
<td>86</td>
<td>56</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>n₁ = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cᵢ</td>
<td>.167</td>
<td>.632</td>
<td>.935</td>
<td>.994</td>
<td>1.00</td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>83</td>
<td>55</td>
<td>64</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>n₂ = 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cᵢ</td>
<td>.366</td>
<td>.611</td>
<td>.897</td>
<td>.964</td>
<td>1.00</td>
</tr>
</tbody>
</table>

| D | .199| .021| .038| .030| 0 |

Maximum Value of D = .199

\[
D^2 = .0396
\]

\[
\chi^2 = 4D^2 \frac{n₁ n₂}{n₁ + n₂}
\]

\[
\chi^2 = 4 \times .0396 \times \frac{185 \times 225}{185 + 225}
\]

\[
\chi^2 = 406.09 \times .0396
\]

\[
\chi^2 = 16.0811 \text{ Significant}
\]

Average Ratings (PUB) = 3.73

Average Ratings (COED.) = 3.84
CLEAR EXPLANATION

Hypothesis:

There is no significant difference between the ability of teacher to explain things clearly in public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n<sub>1</sub> = 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>62</td>
<td>66</td>
<td>47</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>c<sub>f</sub></td>
<td>.335</td>
<td>.691</td>
<td>.945</td>
<td>.983</td>
<td>1.00</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n<sub>2</sub> = 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>123</td>
<td>49</td>
<td>30</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>c<sub>f</sub></td>
<td>.546</td>
<td>.764</td>
<td>.897</td>
<td>.973</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>.211</td>
<td>.073</td>
<td>.048</td>
<td>.010</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D² = .0445

\[
\chi^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2}
\]

\[
\chi^2 = 4 \times .0445 \times \frac{185 \times 225}{185 + 225}
\]

\[
\chi^2 = 406.09 \times .0445
\]

\[
\chi^2 = 18.071 \text{ Significant}
\]

Average Ratings (PUB) = 3.95

Average Ratings (COED.) = 4.18
FAIRNESS IN DECISION

Hypothesis:
There is no significant difference between teacher's fairness in decision in public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>55</td>
<td>57</td>
<td>59</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>(n_1 = 185)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c_f)</td>
<td>.297</td>
<td>.605</td>
<td>.924</td>
<td>.978</td>
<td>1.00</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>98</td>
<td>107</td>
<td>14</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(n_2 = 225)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c_f)</td>
<td>.435</td>
<td>.911</td>
<td>.973</td>
<td>.986</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[
D = 0.306
\]

\[
D^2 = 0.0936
\]

\[
\chi^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2}
\]

\[
\chi^2 = 4 \times 0.0936 \times \frac{185 \times 225}{185 + 225}
\]

\[
\chi^2 = 406.09 \times 0.0936
\]

\[
\chi^2 = 38.01 \text{ Significant}
\]

Average Ratings (PUB) = 3.805

Average Ratings (COED) = 4.30
ALL ROUND ABILITY

Hypothesis:
There is no significant difference between the all round ability of the teachers of public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>43</td>
<td>61</td>
<td>77</td>
<td>3</td>
</tr>
<tr>
<td>n₁ = 185</td>
<td>cᵢ</td>
<td>.232</td>
<td>.562</td>
<td>.978</td>
<td>.994</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td>Non-Public Schools</td>
<td>f</td>
<td>116</td>
<td>40</td>
<td>63</td>
</tr>
<tr>
<td>n₂ = 225</td>
<td>cᵢ</td>
<td>.515</td>
<td>.6932</td>
<td>.973</td>
<td>.977</td>
</tr>
<tr>
<td>D</td>
<td>.283</td>
<td>.131</td>
<td>.005</td>
<td>.017</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Value of D = .283

\[D^2 = .080 \]

\[\chi^2 = 4D^2 \times \frac{n \times n}{n_1 + n_2} \]

\[\chi^2 = 4 \times .080 \times \frac{185 \times 225}{185 + 225} \]

\[\chi^2 = 406.09 \times .08 \]

\[\chi^2 = 32.487 \text{ Significant} \]

Average Ratings (PUB) = 3.767

Average Ratings (COED) = 4.16
SHARE DECISION:

Hypothesis:

There is no significant difference in classroom share decisions with the teachers of public schools (A) and co-educational schools (B) with their pupils.

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>50</td>
<td>55</td>
<td>50</td>
<td>18</td>
</tr>
<tr>
<td>(n_1 = 185)</td>
<td>(c_f)</td>
<td>0.270</td>
<td>0.567</td>
<td>0.837</td>
<td>0.934</td>
</tr>
<tr>
<td>(Co-Education)</td>
<td>f</td>
<td>130</td>
<td>33</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td>(c_f)</td>
<td>0.577</td>
<td>0.724</td>
<td>0.844</td>
<td>0.915</td>
</tr>
<tr>
<td>(n_2 = 225)</td>
<td>D</td>
<td>0.307</td>
<td>0.157</td>
<td>0.007</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Maximum Value of \(D \) = 0.307

\[
D^2 = 0.0942
\]

\[
\chi^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2}
\]

\[
\chi^2 = 4 \times 0.0942 \times \frac{185 \times 225}{185 + 225}
\]

\[
\chi^2 = 406.09 \times 0.0942
\]

\[
\chi^2 = 38.253 \text{ Significant}
\]

Average Ratings (PUB) = 3.61

Average Ratings (COED) = 4.06
Hypothesis:

There is no significant difference between the freedom of work of public schools and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>38</td>
<td>64</td>
<td>36</td>
<td>42</td>
<td>5</td>
</tr>
<tr>
<td>c_f</td>
<td>.205</td>
<td>.551</td>
<td>.745</td>
<td>.972</td>
<td>1.00</td>
</tr>
<tr>
<td>$n_1 = 185$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>78</td>
<td>36</td>
<td>47</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>c_f</td>
<td>.346</td>
<td>.506</td>
<td>.715</td>
<td>.848</td>
<td>1.00</td>
</tr>
<tr>
<td>$n_2 = 225$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum Value of D = 0.141

$D^2 = 0.0198$

$X^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2}$

$X^2 = 4 \times 0.0198 \times \frac{185 \times 225}{185 + 225}$

$X^2 = 406.09 \times 0.0198$

$X^2 = 8.0405$ Insignificant

Average Ratings (PUB) = 3.47

Average Ratings (COED.) = 3.417
TEACHER'S CONCERN

Hypothesis:
There is no significant difference in teachers of public schools (A) and co-educational schools (B), to understand their pupils and concerned about pupils problems.

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_1 = 185)</td>
<td>f</td>
<td>50</td>
<td>64</td>
<td>45</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>(c_f)</td>
<td>.270</td>
<td>.616</td>
<td>.859</td>
<td>.967</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(Co-Education)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td>f</td>
<td>148</td>
<td>30</td>
<td>30</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>(n_2 = 225)</td>
<td>c_f</td>
<td>.657</td>
<td>.791</td>
<td>.924</td>
<td>.964</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[D = .387 \]
\[D^2 = 0.1497 \]
\[\chi^2 = 4D^2 \frac{n_1 \cdot n_2}{n_1 + n_2} \]
\[\chi^2 = 4 \times 0.1497 \times \frac{185 \times 225}{185 + 225} \]
\[\chi^2 = 406.09 \times 0.1497 \]
\[\chi^2 = 60.791 \quad \text{Significant} \]

Average Ratings (PUB) = 3.713
Average Ratings (COED.) = 4.33
Hypothesis:
There is no significant difference between the personal liking of teachers toward their students in public schools (A) and co-educational schools (B).

CALCULATIONS

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>16</td>
<td>49</td>
<td>108</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>c_f</td>
<td>.086</td>
<td>.351</td>
<td>.934</td>
<td>.988</td>
</tr>
<tr>
<td>$n_1 = 185$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Co-Education)</td>
<td>f</td>
<td>13</td>
<td>5</td>
<td>205</td>
<td>1</td>
</tr>
<tr>
<td>Non-Public Schools</td>
<td>c_f</td>
<td>.057</td>
<td>.079</td>
<td>.991</td>
<td>.995</td>
</tr>
<tr>
<td>$n_2 = 225$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum Value of $D = 0.272$

$D^2 = 0.07398$

$\chi^2 = 4D^2 \frac{n_1 n_2}{n_1 + n_2} = 4 \times 0.07398 \times \frac{185 \times 225}{185 + 225}$

$\chi^2 = 30.0425$ Significant

Average Ratings (PUB) = 3.36

Average Ratings (COED) = 3.125
Hypothesis:

There is no significant difference between the effort of students rated by the teachers of public schools (A) and non-public co-educational schools (B).

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-EDUCATIONAL</td>
<td>f</td>
<td>30</td>
<td>93</td>
<td>88</td>
<td>14</td>
</tr>
<tr>
<td>Schools</td>
<td>cf</td>
<td>.133</td>
<td>.546</td>
<td>.937</td>
<td>1.00</td>
</tr>
<tr>
<td>N = 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public schools</td>
<td>f</td>
<td>22</td>
<td>66</td>
<td>79</td>
<td>16</td>
</tr>
<tr>
<td>N = 185</td>
<td>cf</td>
<td>.118</td>
<td>.474</td>
<td>.898</td>
<td>.984</td>
</tr>
</tbody>
</table>

\[
D^2 = 0.072
\]

\[
D^2 = 0.00518
\]

\[
X^2 = 4 \times D^2 \times \frac{n_1 n_2}{n_1 + n_2}
\]

\[
X^2 = 4 \times 0.00518 \times \frac{225 \times 185}{(225+185)}
\]

\[
X^2 = 4 \times 0.00518 \times \frac{41625}{410}
\]

\[
X^2 = 4 \times 101.52 \times 0.00518
\]

\[
X^2 = 406.097 \times 0.00518
\]

\[
X^2 = 2.1035
\]

AV.RATINGS (COED) = 3.61

AV.RATINGS (PUB) = 3.48
Hypothesis:

There is no significant difference between the study method of the students of public school (A) and non-public co-educational school (B).

<table>
<thead>
<tr>
<th>Schools</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-EDUCATIONAL Private Schools</td>
<td>f</td>
<td>26</td>
<td>83</td>
<td>104</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>.115</td>
<td>.483</td>
<td>.945</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Public Schools</td>
<td>c</td>
<td>26</td>
<td>50</td>
<td>95</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>.139</td>
<td>.409</td>
<td>.919</td>
<td>.9835</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Maximum value of D = 0.074

- \(D^2 = .0054 \)
- \(X^2 = 406.97 \times 0.0054 \)
 - \(= 2.034 \)

AV. RATING (COED) = 354
AV. RATING (PUB) = 3.46
Hypothesis:

There is no significant difference between the quality of thinking of students in public schools (A) and non-public co-educational schools (B).

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-EDUCATIONAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Schools</td>
<td>f</td>
<td>17</td>
<td>95</td>
<td>76</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>.075</td>
<td>.497</td>
<td>.834</td>
<td>1.00</td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>21</td>
<td>70</td>
<td>77</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>.113</td>
<td>.491</td>
<td>.907</td>
<td>.971</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D = -.038 .006 -.073 .029 0

Maximum value of D = 0.073

\[D^2 = 0.0053 \]

\[x^2 = 406.097 \times 0.0053 \]

\[= 2.1523 \]

AV. RATING (COED) = 3.40

AV. RATINGS(PUB) = 3.48
Hypothesis:

There is no significant difference between the conduct of students of the public schools (A) and nonpublic co-educational schools (B).

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-EDUCATIONAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>c</td>
<td>73</td>
<td>121</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>.324</td>
<td>.861</td>
<td>.954</td>
<td>1.00</td>
</tr>
<tr>
<td>Public Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>c</td>
<td>86</td>
<td>52</td>
<td>37</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>.462</td>
<td>.743</td>
<td>.941</td>
<td>.989</td>
</tr>
</tbody>
</table>

\[
D = \begin{bmatrix} -0.138 & 0.118 & 0.013 & 0.011 & 0 \end{bmatrix}
\]

Maximum value of \(D\) = 0.138

\[
D^2 = 0.019
\]

\[
X^2 = 406.097 \times 0.019
\]

\[
= 7.715
\]

AV. RATINGS (COED) = 4.14

AV. RATINGS (PUB) = 4.15
Hypothesis:

There is no significant difference between the personal liking of teachers for their students in public schools (A) and non-public co-educational schools (B).

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-EDUCATIONAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Schools</td>
<td>f</td>
<td>20</td>
<td>31</td>
<td>171</td>
<td>3</td>
</tr>
<tr>
<td>225</td>
<td>cf</td>
<td>.088</td>
<td>0.225</td>
<td>.985</td>
<td>1.00</td>
</tr>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>53</td>
<td>45</td>
<td>77</td>
<td>9</td>
</tr>
<tr>
<td>185</td>
<td>cf</td>
<td>.284</td>
<td>.531</td>
<td>.945</td>
<td>.993</td>
</tr>
<tr>
<td>d^2</td>
<td></td>
<td>-.196</td>
<td>0.306</td>
<td>.05</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Maximum value of $D = .306$

$X^2 = 406.097 \times 0.0936 = 38.0106$

AV. RATINGS (COED) = 3.30

AV. RATINGS (PUB) = 3.75
SOCIAL ADJUSTMENT (PEERS)

Hypothesis:

There is no significant difference between the social adjustment of pupils with peers in public schools (A) and non-public co-educational schools (B).

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-EDUCATIONAL Schools</td>
<td>f</td>
<td>23</td>
<td>164</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>.1022</td>
<td>.831</td>
<td>.871</td>
<td>.9687</td>
</tr>
<tr>
<td>Private Schools</td>
<td>f</td>
<td>33</td>
<td>86</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>.178</td>
<td>.642</td>
<td>.836</td>
<td>.988</td>
</tr>
</tbody>
</table>

D = -.075 .189 0.035 -0.0193 0

Maximum value of D = .189

$D^2 = 0.0357$

$x^2 = 406.097 \times 0.035$

= 14.213

AV. RATINGS (COED) = 3.76

AV. RATINGS (PUB) = 3.64
SOCIAL ADJUSTMENT (ADULT)

Hypothesis:
There is no significant difference between the social adjustment of the pupils with adults in public schools (A) and non-public co-educational schools (B).

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-EDUCATIONAL Schools</td>
<td>f</td>
<td>22</td>
<td>164</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>0.097</td>
<td>0.825</td>
<td>0.865</td>
<td>0.963</td>
</tr>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>26</td>
<td>92</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>0.140</td>
<td>0.637</td>
<td>0.82</td>
<td>0.976</td>
</tr>
<tr>
<td>D</td>
<td>-0.043</td>
<td>0.188</td>
<td>0.045</td>
<td>-0.013</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum value of D = 0.188

\[D^2 = 0.0353 \]

\[X^2 = 406.097 \times 0.0353 \]

\[= 14.335 \]

AV. RATINGS (COED) = 3.76

AV. RATINGS (PUB) = 3.578
EMOTIONAL STABILITY

Hypothesis:

There is no significant difference between the characteristics like emotional stability in public schools (A) and non-public co-educational schools (B).

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-EDUCATIONAL</td>
<td>f</td>
<td>121</td>
<td>66</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>Schools</td>
<td></td>
<td>.537</td>
<td>.830</td>
<td>.945</td>
<td>1.00</td>
</tr>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>94</td>
<td>43</td>
<td>43</td>
<td>4</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>.5081</td>
<td>.7405</td>
<td>.9729</td>
<td>.9945</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>.0289</td>
<td>.0895</td>
<td>-0.0279</td>
<td>.0055</td>
</tr>
</tbody>
</table>

Maximum value of D = .0895

\[D^2 = 0.00796 \]

\[X^2 = 406.097 \times 0.00796 \]

\[= 3.2325 \]

AV. RATINGS (COED.) = 4.31
AV. RATINGS (PUB) = 4.20
Hypothesis:
There is no significant difference between the knowledge and career of the students of public schools (A) and co-educational schools (B).

<table>
<thead>
<tr>
<th>Schools</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-EDUCATIONAL</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>15</td>
<td>76</td>
<td>84</td>
<td>36</td>
</tr>
<tr>
<td>N = 215</td>
<td>cf</td>
<td>.066</td>
<td>.403</td>
<td>.776</td>
<td>.9363</td>
</tr>
<tr>
<td>Public Schools</td>
<td>f</td>
<td>24</td>
<td>58</td>
<td>87</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>cf</td>
<td>.129</td>
<td>0.44</td>
<td>.91</td>
<td>.9748</td>
</tr>
<tr>
<td>D N = 18 < 2</td>
<td></td>
<td>-.063</td>
<td>-.037</td>
<td>-.134</td>
<td>-.0385</td>
</tr>
</tbody>
</table>

Maximum value of D = 0.134

\[D^2 = 0.0179 \]

\[x^2 = 406.097 \times 0.0179 \]

\[= 7.2691 \]

AV. RATINGS (COED) = 3.186

AV. RATINGS (PUB) = 3.46