LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Active and Inactive Forms of Acetylcholine Esterase: Mechanism of Inhibition by Organophosphate</td>
<td>18</td>
</tr>
<tr>
<td>2.</td>
<td>Diagrammatic Representation of the Basic Principle of Nerve Impulse Transmission</td>
<td>21</td>
</tr>
<tr>
<td>3.</td>
<td>Ion Fluxes and Membrane Involvement in Nerve Impulse Transmission</td>
<td>21</td>
</tr>
<tr>
<td>4.</td>
<td>Complexity of Environmental Problems Posed by Pest Control Chemicals</td>
<td>28</td>
</tr>
<tr>
<td>5.</td>
<td>Schematic Representation of Metabolic Pathways of Metasystox</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>Action of Phospholipase</td>
<td>61</td>
</tr>
<tr>
<td>7.</td>
<td>Photograph showing Dissected Rat Brain (Dorsal View)</td>
<td>74</td>
</tr>
<tr>
<td>8.</td>
<td>Sagittal Section of Rat Brain, Showing Land Mark Used and Region Obtained in Dissection Procedures</td>
<td>75</td>
</tr>
<tr>
<td>9.</td>
<td>Filter Adopter and Sintered Glass Funnel for the Quick Filtration of Brain Lipid Homogenate Directly in 18x150 nm Test Tube Filter Adaptor is Connected to Vacuum Through the Side Arm Tube</td>
<td>77</td>
</tr>
<tr>
<td>10.</td>
<td>A Simple Device of Microtipped Bulb Pipette Using 10 ml Syringe Length of the Needle 14 cm</td>
<td>79</td>
</tr>
<tr>
<td>11.</td>
<td>Metasystox-Induced Dose-Dependent Depletion of Total Lipid Levels in Different Regions of the Rat Brain and Spinal Cord</td>
<td>107</td>
</tr>
<tr>
<td>12.</td>
<td>Metasystox-Induced Dose-Dependent Depletion of Phospholipids Levels in Different Regions of the Rat Brain and Spinal Cord</td>
<td>111</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>13.</td>
<td>Metasystox-Induced Dose-Dependent Depletion of Cholesterol Levels in Different Regions of the Rat Brain and Spinal Cord</td>
<td>115</td>
</tr>
<tr>
<td>14.</td>
<td>Metasystox-Induced Dose-Dependent Depletion of Esterified, Fatty Acids Levels in Different Regions of the Rat Brain and Spinal Cord</td>
<td>123</td>
</tr>
<tr>
<td>15.</td>
<td>Metasystox-Induced Dose-Dependent Depletion of Gangliosides Levels in Different Regions of the Rat Brain and Spinal Cord</td>
<td>127</td>
</tr>
<tr>
<td>16.</td>
<td>Photomicrograph Showing the Total Lipid Contents (Sudanophilic Deposits) of Cerebral Hemisphere of Control Rat, Sudan Black B, X600</td>
<td>129</td>
</tr>
<tr>
<td>17.</td>
<td>Photomicrograph of Cerebral Hemisphere Showing the Decrease in Sudanophilic Deposition of Total Lipids After the Administration of Metasystox, Sudan Black B, X600</td>
<td>129</td>
</tr>
<tr>
<td>18.</td>
<td>Cerebral Hemisphere of Control Rat Showing the Orange Red Reaction Products of Phospholipids. OTAN, X600</td>
<td>130</td>
</tr>
<tr>
<td>19.</td>
<td>Cerebral Hemisphere of Metasystox Treated Rat Showing the Diminution in the Orange Red Reaction Products of Phospholipids. OTAN, X600</td>
<td>130</td>
</tr>
<tr>
<td>20.</td>
<td>Metasystox-Induced Dose-Dependent Elevation in the Rate of Lipid Peroxidation in Different Regions of the Rat Brain and Spinal Cord</td>
<td>134</td>
</tr>
<tr>
<td>21.</td>
<td>Metasystox-Induced Dose-Dependent Elevation in the Activity of Lipase in Different Regions of the Rat Brain and Spinal Cord</td>
<td>139</td>
</tr>
<tr>
<td>22.</td>
<td>Photomicrograph Showing Lipase Activity in the Cerebrum of Control Rat (x 300)</td>
<td>140</td>
</tr>
<tr>
<td>23.</td>
<td>Photomicrograph Showing Lipase Activity in Cerebrum of Experimental Rat (X 300)</td>
<td>142</td>
</tr>
</tbody>
</table>
24. Effect of Vitamin E on the Rate of Lipid Peroxidation in Different Regions of the Rat Brain and Spinal Cord Following the Administration of Metasystox (2 mg/kg body wt). Values Represent Mean ± S.E. 142

25. Effect of Vitamin E on the Lipase Activity in Different Regions of the Rat Brain and Spinal Cord Following the Administration of Metasystox (2 mg/kg body wt). Values Represent Mean ± S.E. 143

26. Effect of Metasystox (1, 2 and 4 mg/kg body wt i.p. Daily for 10 Days) on the Level of DNA in Different Regions of the Rat Brain and Spinal Cord. Values Expressed as mg/g Fresh Tissue, Mean ± S.E. 148

27. Effect of Metasystox (1, 2 and 4 mg/kg body wt i.p. Daily for 10 Days) on the Level of RNA in Different Regions of the Rat Brain and Spinal Cord. Values expressed as mg/g Fresh Tissue Mean ± S.E. 152

28. Photomicrograph Showing Nucleic Acids Concentration of the Cerebrum of Central Rat (X 300) 154

29. Photomicrograph Showing Diminution of Nucleic Acids Concentration in the Cerebrum of the Metasystox Treated Rat (X 300) 154

30. Effect of Metasystox (1, 2 and 4 mg/kg body wt i.p. Daily for 10 Days) on the Activity of DNase in Different Regions of Rat Brain and Spinal Cord Activity of DNase Expressed as Units/mg Protein. Values Expressed Mean ± S.E. 158

31. Effect of Metasystox (1, 2 and 4 mg/kg body wt i.p. Daily for 10 Days) on the Activity of RNase in Different Regions of the Rat Brain and Spinal Cord Activity of RNase Expressed as Units/mg Protein, Values Represent Mean ± S.E. 163
32. Effect of Metasystox (1, 2 and 4 mg/kg body wt i.p. Daily for 10 Days) on the Level of Protein in Different Regions of the Rat Brain and Spinal Cord. Values Expressed as mg/g Fresh Tissue

33. The Pathway to Phosphatidylcholine Involving Cytidine Nucleotides (Kennady, 1957)