6 Ciphertext-Policy Attribute-Based Encryption with Hidden Access Policy and User Revocation support

6.1 Introduction

The enhancement of BK-CP-ABE with hidden access policy and direct revocation of users has been discussed in the previous chapters. In this Chapter we combine both enhancements in a single scheme. To the best of our knowledge, our scheme is the first CP-ABE to provide hidden access policy and direct revocation in a single scheme. To achieve this, we restrict the access policy to possess only the AND operator, each attribute can take multiple values and the revoked set $S = \{Id_1, ..., Id_r\}$ is of r identities. If the user’s private key satisfies the access policy P and the $ID \notin S$ then the algorithm will decrypt the ciphertext and return the original message.

6.2 Definition and Security Model for CP-ABE-HAPUR

Definition 14 (Access structure)

Let $U = \{a_1, a_2, ..., a_n\}$ be a set of attributes. For $a_i \in U$, $S_i = \{v_{i,1}, v_{i,2}, ..., v_{i,n_i}\}$ is a set of possible values, where n_i is the number of possible values for a_i. Let $L = [l_1, l_2, ..., l_n]$ $l_i \in S_i$ be an attribute list for a user, and $P = [\omega_1, \omega_2, ..., \omega_n]$ $P_i \in S_i$ be an access structure. The notation $L \models P$ expresses that an attribute list L satisfies an access structure P, namely $L_i = \omega_i (i = 1, 2, n)$. The notation $L \not\models P$ implies L not satisfying the access structure P.
CP-ABE-HAPUR consists of four fundamental algorithms: Setup, Key Generation, Encryption and Decryption.

Setup:

The setup algorithm takes no input other than the implicit security parameter. It outputs the public parameters PK and a master key MK.

KeyGen (MK,PK, L, ID):

The key generation algorithm takes as input the master key MK, public key PK, an identity ID and the attribute list L. It outputs a private key SK_L for the attribute list L.

Encrypt (S, PK, \mathcal{P}, m):

The encryption algorithm takes as input a revocation set S of identities, public parameters PK, the message m, and an access policy \mathcal{P} over the universe of attributes. The algorithm will encrypt m and produce a ciphertext CT such that any user with a key for an identity $ID \notin S$ and the attribute list L satisfies the access policy can decrypt.

Decrypt(CT,SK_L, ID,S):

The decryption algorithm takes as input the ciphertext CT that was generated for the revoked set S, as well as an identity and a private key SK_L for the attribute list L. If the list L of attributes satisfies the access policy \mathcal{P} and the $ID \notin S$ then
the algorithm will decrypt the ciphertext and return a message M.

6.2.1 Security Model for CP-ABE-HAPUR

The selective security notion for CP-ABE-HAPUR is defined in the following game.

Init

The adversary chooses the target set S^* of Identities, challenge ciphertext policies P_0, P_1 to the challenger.

Setup

The challenger runs the Setup algorithm and gives the public parameters, PK to the adversary.

Phase1

The adversary makes a secret key request to the KeyGen oracle for any attribute list L, user index ID, with the restriction that $ID \in S^*$ or L does not satisfy the access policies P_0, P_1. The Challenger returns the output of $KeyGen(L, MK, ID, PK)$.

Challenge

The adversary submits two equal length messages M_0 and M_1. The Challenger flips a random coin d, and encrypts M_d under (P_d, S^*). The ciphertext CT^* is given to the adversary.
Phase 2

The adversary can continue querying KeyGen with the same restriction as during Phase 1.

Guess

The adversary outputs a guess d' of d.

Definition 15 A ciphertext-policy attribute based encryption scheme is said to be secure against an adaptive chosen-plaintext attack (CPA) if any polynomial time adversaries has only a negligible advantage in the IND-CPA game, where the advantage is defined to be $\epsilon = |Pr[d' = d] - \frac{1}{2}|$.

6.3 CP-ABE-HAPUR Scheme

Setup (1^k)

The setup algorithm chooses a group G_0 of prime order p and a generator g.

Let $U = \{a_1, a_2, ..., a_n\}$ be the set of attribute names.

For each attribute a_i where $1 \leq i \leq n$ it chooses n_q random values $t_{i,j} \in \mathbb{Z}_p$, and computes $T_{i,j} = g^{t_{i,j}} \{1 \leq j \leq n_q ; 1 \leq i \leq n\}$

Let $y = e(g, g)^{\alpha}$ where $\alpha \in \mathbb{Z}_p$.

Let b be a random element $\in \mathbb{Z}_p$ and $h \in G$.

The Public Key is $PK = (g, g^b, h, y, T_{i,j}\{1 \leq j \leq n_q; 1 \leq i \leq n\})$ and the Master Secret Key is $MK = (\alpha, b, t_{i,j}\{1 \leq j \leq n_q; 1 \leq i \leq n\})$.

76
KeyGen (ID,MK,PK,L)

This algorithm takes as input the user index ID, master secret key, public key and the attribute list of the user and performs the following:

Let $L = [l_1, l_2, .., l_n] = \{v_{1,t_1}, v_{2,t_2}, .., v_{n,t_n}\}$ be the attribute list of the user for which he obtains the corresponding secret key.

a) Select random values $a,r,\omega \in \mathbb{Z}_p$ and compute the following

\[
d_0 = g^a g^{ar} g^{b\omega}; d_2 = g^{\omega}; d_3 = (g^{bID_1})^{\omega}\]

b) For each attribute $v_{i,t_i} \in L$, compute $d^*_i = g^{art_i} \{1 \leq i \leq n\}$

The secret key is $SK_L = \{d_0, d_2, d_3, \forall l_i \in L : d^*_i\}$

Encrypt(S,PK, \mathcal{P}, m)

The encryption algorithm takes as input a user index set $S = \{ID_1, .., ID_r\}$, public key PK, message $m \in G_1$ to encrypt and the access policy $\mathcal{P} = [\omega_1, .., \omega_n]$.

Step 1: Select a random element $s \in [-2^\ell, 2^\ell]$ and compute $C_0 = g^s$.

M is the distribution matrix constructed for the access policy \mathcal{P}.

Choose $\rho = (s, \rho_2, ..., \rho_e)^T$, where ρ_i's are uniformly random chosen integers in $[-2^\ell_0+k, 2^\ell_0+k]$.

Step 2:

a) Computes $M \cdot \rho = (s_1, ..., s_d)^T$
b) $C_1 = m \cdot g^s = m \cdot e(g, g)^{as}$; $C'_{k} = g^{sk}$; $C^+_{k} = (g^{bID_k h})^{sk}$; $k = 1$ to r

c) For each $v_i,t_i \in w_i$, calculate $C_{i,j} = T_{i,j}^{s_i}$ \{1 $\leq j \leq n_q$; $1 \leq i \leq n$\} using the corresponding shares of the attribute.

The ciphertext is published as $CT = (C_0, C_1, C^*_i, C'_k, C^+_k)$.

Decrypt(CT, SK_L, ID, S)

The decryption algorithm takes as input the ciphertext CT, revoked set S as well as the identity and a private key SK_L for the attribute list L. By using Lemma1, it is possible to construct a reconstruction vector $\lambda_A \in Z^d$ such that $M_A^T \lambda_A = \xi$. With this, it is possible to reconstruct the secret using $\sum_{i \in A} \lambda_i s_i = s$.

If $ID \not\in S$ then the decryption algorithm computes

$$E = \prod_{i \in L} \frac{e(C_0, d_0)}{e(C^*_i, (d^*_i)^{s_i})} \prod_{k = 1}^q \left[\frac{e(d_2, C^+_i)}{e(d_3, C'_k)} \right]^{\lambda_k_{ID_k}}$$

$$= e(g, g)^{as}$$

Note that this computation is defined if $ID \neq ID_k$ for $k = 1,..,r$. It then obtains

$$m = C_1 / E.$$
6.4 Security Analysis

Theorem 6.1 Suppose the DBDH assumption holds, then no polynomial adversary can selectively break the CP-ABE-HAPUR system.

Proof: We prove that our scheme is selectively secure under the DBDH assumption. The adversary commits to the challenge ciphertext policies $\mathcal{P}_0, \mathcal{P}_1$ in advance. We use a sequence of hybrid games to prove that the adversary cannot win the original security game denoted by G with non-negligible probability. We begin by slightly modifying the game G into a game G_0. Games G and G_0 are the same except for how the challenge ciphertext is generated. In G_0, if $M_0 \neq M_1$, then the challenge ciphertext component C_1 is a random element of G_T regardless of the random coin d, other parts of the ciphertext is generated in normal way. If $M_0 = M_1$, then the challenge ciphertext in G_0 is generated correctly, in this case, we have $G = G_0$.

In this theorem first we will prove that the difference of advantage of A in game G and game G_0 is negligible for any polynomial adversary A, then the game G_0 is modified by changing the ciphertext parts $C_{i,j}$. We define a sequence of games as follows. For $v_{i,t}$ such that $\{v_{i,t} \in \omega_{0,i} \land v_{i,t} \in \omega_{1,i}\}$ or $\{v_{i,t} \notin \omega_{0,i} \land v_{i,t} \notin \omega_{1,i}\}$, the components $C_{i,j}$ are generated as in the real scheme through the sequence of all the games.

If there is $v_{i,t}$ such that $\{v_{i,t} \in \omega_{0,i} \land v_{i,t} \notin \omega_{1,i}\}$ or $\{v_{i,t} \notin \omega_{0,i} \land v_{i,t} \in \omega_{1,i}\}$, the components $C_{i,j}$ generated properly in game G_{i-1} are replaced with the random
values in the new modified game G_i regardless of the random coin b. This process is repeated until there is no component satisfying $\{v_{i,t} \notin \omega_{0,i} \land v_{i,t} \in \omega_{1,i}\}$ or $\{v_{i,t} \notin \omega_{0,i} \land v_{i,t} \in \omega_{1,i}\}$. At the end of the sequence game, the advantage of the adversary is zero because the adversary is given a ciphertext chosen from the same distribution regardless of the random coin d.

Suppose we have an adversary A with non-negligible advantage ϵ in the selective security game against our construction. We show how to use the adversary A to build a simulator B that is able to solve the DBDH assumption. The Challenger gives the simulator B the DBDH challenge: $(g,A,B,C,D) = (g,g^a,g^b,g^s,D)$.

Init. The Adversary A gives two challenge ciphertext policies $\mathcal{P}_0 = [\omega_{0,1},..,\omega_{0,n}]$, $\mathcal{P}_1 = [\omega_{1,1},..,\omega_{1,n}]$ and a revocation set $S^* = \{Id_1,Id_2,..,Id_r\}$ to the simulator. The simulator flips a fair binary coin $d \in \{0,1\}$.

Setup The simulator selects at random $a' \in Z_p$ and implicitly sets $\alpha = ab + a'$ by letting $e(g,g)^\alpha = e(g^a,g^b) e(g,g)^{a'}$. For all $v_{i,t} \in \omega_{d,i}$ chooses a random $q_i \in Z_p$ and set $T_i = g^{\left\lfloor \frac{1}{\sigma_i} \right\rfloor}$ if $v_{i,t} \notin \omega_{d,i}$, otherwise $T_i = g^{q_i}$. It selects $g^h = \prod_{1 \leq i \leq r^*} g^{q_i}$, $h = \prod_{1 \leq i \leq r^*} \{g^{q_i}\}^{-1}$, g^y. The simulator B sends the above public parameters to A.

Phase 1 In this phase the simulator answers private key queries. Suppose the simulator is given a private key for a list L where L does not satisfy \mathcal{P}_d OR $ID \notin S^*$. On each request B chooses a random variable $v, \delta \in Z_p$, and finds a vector $k =$
\((k_1, k_2, \ldots, k_e)^T \in \mathbb{Z}^e\) such that \(M' \cdot k = 0\) with \(k_1 = 1\). By the definition of Sweeping vector, such a vector must exist. The simulator sets \(r = v - k_j b\) and chooses \(k_j\) as \(k_1\) to compute, \(d_0 = g^{a} g^{ar} g^{b\omega} = \prod_{1 \leq j \leq n} g^{ab+a'} g^{a(v-k_j b)} g^{a_\delta} = \prod_{1 \leq j \leq n} g^{a'} A^v g^{a_\delta}\)

In calculating \(d_i^*\) we have the term \(M' a \cdot k_j b\) get cancelled because of \(M' \cdot k = 0\)
\(d_i^* = g^{(v-k_j b)a_j} M'_i = A^{vM'_j} q_j\)

\(d_2 = g^{b}\)

\(d_3 = \prod_{1 \leq i,j \leq n} g^{(a_i-a_j)(I^D - I D_j)} g^{a_\delta}\)

Challenge
A submits two messages \(m_0, m_1 \in G_1\), turns the encryption of \(m_d\). The encryption of \(m_d\) can be done as follows:

\(C_0 = g^s, C_1 = m_d De(g^s, g^{a'})\)

The simulator will choose uniformly random integers \(z_2, \ldots, z_h \in [-2^{\ell_0+k}, 2^{\ell_0+k}]\) and share the secret using the vector \(\Phi = (x, z_2, \ldots, z_h)\).

Create the distribution matrix \(M\), for the access policy \(P_d\). Compute \(M \cdot \Phi\) and use the shares to encrypt the access policy with corresponding \(q_j\) for the attributes present in the access policy i.e., \(v_{i,t_i} \in \omega_{d,i}\), \(C_{i,j} = T_{i,j}^{x_j}\).

Phase 2
Same as Phase 1.

Guess
A outputs a guess \(d'\) of \(d\). The simulator then outputs 1 to the guess if \(d' = d\), otherwise 0. By our assumption, the probability that \(A\) guesses \(d\) correctly in the game \(G\) has a non-negligible difference from that of guessing \(d\) correctly in \(G_0\).
When $D = e(g, g)^{xyz}$, A is in game G and when D is random, A is in game G_0. Therefore the simulator B has the same advantage as the adversary’s in the DBDH game.

6.5 Summary

We constructed the CP-ABE-HAPUR scheme that can hide the access policy partially as well as revoke the users in a single scheme. To achieve this, we combine the Privacy Aware CP-ABE scheme and CP-ABE-UR scheme with the restricted access structure containing AND operators alone. Security analysis of this scheme is provided under the DBDH assumption.