CONTENTS

<table>
<thead>
<tr>
<th>S. No</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>1.1</td>
<td>Historical development</td>
</tr>
<tr>
<td>1.2</td>
<td>Why are supercapacitors being developed?</td>
</tr>
<tr>
<td>1.3</td>
<td>What are supercapacitors?</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Advantages and disadvantages of supercapacitors</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Advantages</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>1.4</td>
<td>Principle of operation</td>
</tr>
<tr>
<td>1.5</td>
<td>Mechanism of charge storage</td>
</tr>
<tr>
<td>1.5.1</td>
<td>The Helmholtz double layer</td>
</tr>
<tr>
<td>1.5.2</td>
<td>The Gouy-Chapman model</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Stern and Grahame model</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Recent model</td>
</tr>
<tr>
<td>1.6</td>
<td>Differences between supercapacitor and battery</td>
</tr>
<tr>
<td>1.7</td>
<td>Classification of supercapacitors</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Electrochemical double-layer capacitors</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Pseudocapacitors</td>
</tr>
<tr>
<td>1.7.2.1</td>
<td>Adsorption of ions</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Hybrid capacitors</td>
</tr>
<tr>
<td>1.8</td>
<td>Components of supercapacitors</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Electrode materials</td>
</tr>
</tbody>
</table>
1.8.1.1 Metal oxides
1.8.1.2 Conducting polymers
1.8.1.3 Carbon
1.8.2 Electrolytes
1.8.3 Separator

1.9. Applications of supercapacitors
1.9.1 Memory backup
1.9.2 Electric vehicles
1.9.3 Power quality
1.9.4 Battery improvement
1.9.5 Electromechanical actuators

References

II LITERATURE SURVEY AND SCOPE OF THE PRESENT INVESTIGATION
2.1. Introduction
2.2. Literature survey
 2.2.1 Synthesis of polythiophene
 2.2.2 Polythiophene in supercapacitor applications
2.3 Scope of the present investigation

References

III EXPERIMENTAL DETAILS
3.1 Materials used
3.2 Synthesis of polythiophene nanoparticles
3.3 Synthesis of polythiophene-tartaric acid Nanoparticles
3.4 Synthesis of polythiophene-citric acid Nanoparticles
3.5 Synthesis of polythiophene-p-toluene sulphonic acid nanoparticles 72
3.6 Synthesis of polythiophene-anthraquinone sulphonic acid nanoparticles 74
3.7 Characterization of the synthesized polymers 77
 3.7.1 FTIR studies
 3.7.2 Ultra Violet-visible studies
 3.7.3 X-ray diffraction analysis
 3.7.4 Scanning electron microscope studies
 3.7.5 Conductivity measurements
3.8 Supercapacitor characterization 87
 3.8.1 Preparation of composite electrodes
 3.8.2 Unit cell fabrication
 3.8.3 Cyclic voltammetry studies
 3.8.4 AC Impedance studies
 3.8.5 Charge-discharge measurements

References 99

IV

RESULTS AND DISCUSSION
101

4.1 Synthesis of PTh nanoparticles 101
 4.1.1 FTIR analysis
 4.1.2 UV-visible analysis
 4.1.3 X-ray diffraction analysis
 4.1.4 SEM studies
4.1.5 Conductivity measurements
4.1.6 Cyclic voltammetry studies
4.1.7 AC Impedance studies
4.1.8 Charge-discharge studies

4.2 Synthesis of PTh-TA nanoparticles
 4.2.1 FTIR studies
 4.2.2 UV-visible studies
 4.2.3 X-ray diffraction analysis
 4.2.4 SEM studies
 4.2.5 Conductivity measurements
 4.2.6 Cyclic voltammetry studies
 4.2.7 AC Impedance studies
 4.2.8 Charge-discharge studies

4.3 Synthesis of PTh-CA nanoparticles
 4.3.1 FTIR studies
 4.3.2 UV-visible studies
 4.3.3 X-ray diffraction analysis
 4.3.4 SEM studies
 4.3.5 Conductivity measurements
 4.3.6 Cyclic voltammetry studies
 4.3.7 AC Impedance studies
 4.3.8 Charge-discharge studies

4.4 Synthesis of PTh-p-TSA nanoparticles
4.4.1 FTIR studies
4.4.2 UV-visible studies
4.4.3 X–ray diffraction analysis
4.4.4 SEM studies
4.4.5 Conductivity measurements
4.4.6 Cyclic voltammetry studies
4.4.7 AC Impedance studies
4.4.8 Charge-discharge studies

4.5 Synthesis of PTh-AQSA nanoparticles 175
4.5.1 FTIR studies
4.5.2 UV-visible studies
4.5.3 X–ray diffraction analysis
4.5.4 SEM studies
4.5.5 Conductivity measurements
4.5.6 Cyclic voltammetry studies
4.5.7 AC Impedance studies
4.5.8 Charge-discharge studies

References 193

V SUMMARY AND CONCLUSION 195

List of publications 200