CHAPTER- IV

INTUITIONISTIC L-FUZZY TRANSLATION

4.1 Introduction:

This chapter contains the intuitionistic L-fuzzy translation of intuitionistic L-fuzzy subgroups of a group. These concepts are used in the development of some important results and theorems.

4.1.1 Definition: Let A be an intuitionistic L-fuzzy subset of X and α and β in $[0, 1- \text{Sup}\{ \mu_A(x) + \nu_A(x) : x \in X, 0 < \mu_A(x) + \nu_A(x) < 1 \}]$. Then $T = T_{(\alpha, \beta)}$ is called an intuitionistic L-fuzzy translation of A if

$\mu_T(x) = \mu_A(x) + \alpha$, $\nu_T(x) = \nu_A(x) + \beta$,

$\alpha+\beta \leq 1-\text{Sup}\{\mu_A(x) + \nu_A(x) : x \in X, 0 < \mu_A(x) + \nu_A(x) < 1\}$, for all x in X.

4.2 – PROPERTIES OF INTUITIONISTIC L-FUZZY TRANSLATION:

4.2.1 Theorem: If T is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup A of a group G, then $\mu_T(x^{-1}) = \mu_T(x)$ and $\nu_T(x^{-1}) = \nu_T(x)$, $\mu_T(x) \leq \mu_T(e)$ and $\nu_T(x) \geq \nu_T(e)$, for all x and e in G.

Proof: Let x and e be elements of G.

Now, $\mu_T(x) = \mu_A(x) + \alpha$

$= \mu_A((x^{-1})^{-1}) + \alpha$

$\geq \mu_A(x^{-1}) + \alpha$
\[\mu_T(x) = \mu_T(x^{-1}) \]
\[= \mu_A(x^{-1}) + \alpha \]
\[\geq \mu_A(x) + \alpha \]
\[= \mu_T(x). \]

Therefore, \(\mu_T(x) = \mu_T(x^{-1}) \), for \(x \) in \(G \).

And \(\nu_T(x) = \nu_A(x) + \beta \)
\[= \nu_A((x^{-1})^{-1}) + \beta \]
\[\leq \nu_A(x^{-1}) + \beta \]
\[= \nu_T(x^{-1}) \]
\[= \nu_A(x^{-1}) + \beta \]
\[\leq \nu_A(x) + \beta \]
\[= \nu_T(x). \]

Therefore, \(\nu_T(x) = \nu_T(x^{-1}) \), for \(x \) in \(G \).

Now, \(\mu_T(e) = \mu_A(e) + \alpha \)
\[= \mu_A(xx^{-1}) + \alpha \]
\[\geq \{ \mu_A(x) \land \mu_A(x^{-1}) \} + \alpha \]
\[= \mu_A(x) + \alpha \]
\[= \mu_T(x). \]

Therefore, \(\mu_T(e) \geq \mu_T(x) \), for \(x \) in \(G \).

And \(\nu_T(e) = \nu_A(e) + \beta \)
\[= \nu_A(xx^{-1}) + \beta \]
\[\leq \{ \nu_A(x) \lor \nu_A(x^{-1}) \} + \beta \]
\[= \nu_A(x) + \beta\]

\[= \nu_T(x).\]

Therefore, \(\nu_T(e) \leq \nu_T(x)\), for \(x\) in \(G\).

4.2.2 Theorem: If \(T\) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A\) of a group \(G\), then

(i) \(\mu_T(xy^{-1}) = \mu_T(e)\) implies \(\mu_T(x) = \mu_T(y)\),

(ii) \(\nu_T(xy^{-1}) = \nu_T(e)\) implies \(\nu_T(x) = \nu_T(y)\), for all \(x, y\) and \(e\) in \(G\).

Proof: Let \(x, y\) and \(e\) be elements of \(G\).

Now, \(\mu_T(x) = \mu_A(x) + \alpha\)

\[= \mu_A(xy^{-1}y) + \alpha\]

\[\geq \{ \mu_A(xy^{-1}) \land \mu_A(y) \} + \alpha\]

\[= (\mu_A(xy^{-1}) + \alpha) \land (\mu_A(y) + \alpha)\]

\[= \mu_T(xy^{-1}) \land \mu_T(y)\]

\[= \mu_T(e) \land \mu_T(y)\]

\[= \mu_T(y) = \mu_A(y) + \alpha\]

\[= \mu_A(yx^{-1}x) + \alpha\]

\[\geq \{ \mu_A(yx^{-1}) \land \mu_A(x) \} + \alpha\]

\[= (\mu_A(yx^{-1}) + \alpha) \land (\mu_A(x) + \alpha)\]

\[= \mu_T(yx^{-1}) \land \mu_T(x)\]

\[= \mu_T(e) \land \mu_T(x)\]

\[= \mu_T(x).\]

Therefore, \(\mu_T(x) = \mu_T(y)\), for all \(x\) and \(y\) in \(G\).
And \(v_T(x) = v_A(x) + \beta \)
\[
= v_A(xy^{-1}y) + \beta \\
\leq \{ v_A(xy^{-1}) \lor v_A(y) \} + \beta \\
= (v_A(xy^{-1}) + \beta) \lor (v_A(y) + \beta) \\
= v_T(xy^{-1}) \lor v_T(y) \\
= v_T(e) \lor v_T(y) \\
= v_T(y) = v_A(y) + \beta \\
= v_A(yx^{-1}x) + \beta \\
\leq \{ v_A(yx^{-1}) \lor (v_A(x) \} + \beta \\
= (v_A(yx^{-1}) + \beta) \lor (v_A(x) + \beta) \\
= v_T(yx^{-1}) \lor v_T(x) \\
= v_T(e) \lor v_T(x) \\
= v_T(x).
\]

Therefore, \(v_T(x) = v_T(y) \), for all \(x \) and \(y \) in \(G \).

4.2.3 Theorem: If \(T \) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A \) of a group \(G \), then \(T \) is an intuitionistic L-fuzzy subgroup of \(G \), for all \(x \) and \(y \) in \(G \).

Proof: Assume that \(T \) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A \) of a group \(G \). Let \(x \) and \(y \) in \(G \).

We have, \(\mu_T(xy^{-1}) = \mu_A(xy^{-1}) + \alpha \)
\[
\geq \{ \mu_A(x) \land \mu_A(y^{-1}) \} + \alpha \\
= \{ \mu_A(x) \land \mu_A(y) \} + \alpha
\]
\[\begin{aligned}
\mu_A(x) + \alpha \land \mu_A(y) + \alpha \\
= \mu_T(x) \land \mu_T(y).
\end{aligned} \]

Therefore, \(\mu_T(xy^{-1}) \geq \mu_T(x) \land \mu_T(y) \), for all \(x \) and \(y \) in \(G \).

And \(\nu_T(xy^{-1}) = \nu_A(xy^{-1}) + \beta \)

\[\begin{aligned}
& \leq \{ \nu_A(x) \lor \nu_A(y^{-1}) \} + \beta \\
& = \{ \nu_A(x) \lor \nu_A(y) \} + \beta \\
& = (\nu_A(x) + \beta) \lor (\nu_A(y) + \beta) \\
& = \nu_T(x) \lor \nu_T(y).
\end{aligned} \]

Therefore, \(\nu_T(xy^{-1}) \leq \nu_T(x) \lor \nu_T(y) \), for all \(x \) and \(y \) in \(G \).

Hence \(T \) is an intuitionistic L-fuzzy subgroup of \(G \).

4.2.4 Theorem: If \(T \) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A \) of a group \(G \), then \(H = \{ x \in G : \mu_T(x) = \mu_T(e) \land \nu_T(x) = \nu_T(e) \} \) is either empty or a subgroup of \(G \).

Proof: If no element satisfies this condition, then \(H \) is empty.

If \(x \) and \(y \) satisfies this condition, then

\[\begin{aligned}
\mu_T(x^{-1}) = \mu_T(x) = \mu_T(e) \land \nu_T(x^{-1}) = \nu_T(x) = \nu_T(e).
\end{aligned} \]

Therefore, \(\mu_T(x^{-1}) = \mu_T(e) \land \nu_T(x^{-1}) = \nu_T(e) \).

Therefore, \(x^{-1} \in H \).

Now, \(\mu_T(xy^{-1}) \geq \mu_T(x) \land \mu_T(y) \)

\[\begin{aligned}
& = \mu_T(e) \land \mu_T(e) \\
& = \mu_T(e),
\end{aligned} \]

and \(\mu_T(e) = \mu_T(xy^{-1}(xy^{-1})^{-1}) \)
\[\geq \mu_T(xy^{-1}) \land \mu_T(xy^{-1}) \]
\[= \mu_T(xy^{-1}). \]
Therefore, \(\mu_T(e) = \mu_T(xy^{-1}) \), for all \(x \) and \(y \) in \(G \).

Now, \(\nu_T(xy^{-1}) \leq \nu_T(x) \lor \nu_T(y) \)
\[= \nu_T(e) \lor \nu_T(e) \]
\[= \nu_T(e), \]
and \(\nu_T(e) = \nu_T((xy^{-1})(xy^{-1})^{-1}) \)
\[\leq \nu_T(xy^{-1}) \lor \nu_T(xy^{-1}) \]
\[= \nu_T(xy^{-1}). \]
Therefore, \(\nu_A(e) = \nu_A(xy^{-1}) \), for all \(x \) and \(y \) in \(G \).

Therefore, \(xy^{-1} \) in \(H \). Hence \(H \) is a subgroup of \(G \).

4.2.5 Theorem: If \(T \) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A \) of a group \(G \), then \(H = \{ < x, \mu_T(x) > : \mu_T(x) = \mu_T(e) \land \nu_T(x) = \nu_T(e) \} \) is either empty or a L-fuzzy subgroup of \(G \).

Proof: If no element satisfies this condition, then \(H \) is empty.

If \(x \) and \(y \) satisfies this condition, then

by Theorem 4.2.4, \(xy^{-1} \) in \(H \).

Therefore, \(\mu_T(xy^{-1}) = \mu_T(e) \land \nu_T(xy^{-1}) = \nu_T(e) \), for all \(x \) and \(y \) in \(G \).

But, \(\mu_T(xy^{-1}) \geq \mu_T(x) \land \mu_T(y^{-1}) \)
\[= \mu_T(x) \land \mu_T(y), \text{for all } x \text{ and } y \text{ in } G. \]
Hence \(H \) is a L-fuzzy subgroup of \(G \).
4.2.6 **Theorem:** If T is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup A of a group G, then $H = \{ < x, \nu_T(x) > : \mu_T(x) = \mu_T(e) \text{ and } \nu_T(x) = \nu_T(e) \}$ is either empty or an antiL-fuzzy subgroup of G.

Proof: It is trivial.

4.2.7 **Theorem:** Let T be an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup A of a group G. If $\mu_T(xy^{-1}) = 1$, then $\mu_T(x) = \mu_T(y)$ and if $\nu_T(xy^{-1}) = 0$, then $\nu_T(x) = \nu_T(y)$.

Proof: Let x and y be elements of G.

Now, $\mu_T(x) = \mu_T(xy^{-1}y)$

$\geq \mu_T(xy^{-1}) \land \mu_T(y)$

$= 1 \land \mu_T(y)$

$= \mu_T(y) = \mu_T(y^{-1})$

$= \mu_T(x^{-1}xy^{-1})$

$\geq \mu_T(x^{-1}) \land \mu_T(xy^{-1})$

$= \mu_T(x) \land \mu_T(xy^{-1})$

$= \mu_T(x) \land 1 = \mu_T(x)$.

Therefore, $\mu_T(x) = \mu_T(y)$, for all x and y in G.

Now, $\nu_T(x) = \nu_T(xy^{-1}y)$

$\leq \nu_T(xy^{-1}) \lor \nu_T(y)$

$= 0 \lor \nu_T(y)$
\[T(y) = T(x^{-1}xy^{-1}) \]
\[\leq T(x^{-1}) \lor T(xy^{-1}) \]
\[= T(x) \lor T(xy^{-1}) \]
\[= T(x) \lor 0 = T(x). \]

Therefore, \(T(x) = T(y) \), for all \(x \) and \(y \) in \(G \).

4.2.8 Theorem: Let \(G \) be a group. If \(T \) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A \) of \(G \), then \(\mu_T(xy) = \mu_T(x) \land \mu_T(y) \) and \(\nu_T(xy) = \nu_T(x) \lor \nu_T(y) \), for each \(x \) and \(y \) in \(G \) with \(\mu_T(x) \neq \mu_T(y) \) and \(\nu_T(x) \neq \nu_T(y) \).

Proof: Let \(x \) and \(y \) be elements of \(G \).

Assume that \(\mu_T(x) > \mu_T(y) \) and \(\nu_T(x) < \nu_T(y) \).

Then, \[\mu_T(y) = \mu_T(x^{-1}xy) \]
\[\geq \mu_T(x^{-1}) \land \mu_T(xy) \]
\[= \mu_T(x) \land \mu_T(xy) \]
\[= \mu_T(xy) \]
\[\geq \mu_T(x) \land \mu_T(y) = \mu_T(y). \]

Therefore, \(\mu_T(xy) = \mu_T(y) = \mu_T(x) \land \mu_T(y) \), for all \(x \) and \(y \) in \(G \).

Then, \[\nu_T(y) = \nu_T(x^{-1}xy) \]
\[\leq \nu_T(x^{-1}) \lor \nu_T(xy) \]
\[= \nu_T(x) \lor \nu_T(xy) \]
\[= \nu_T(xy) \]
\[\leq \nu_T(x) \vee \nu_T(y) = \nu_T(y). \]

Therefore, \(\nu_T(xy) = \nu_T(y) = \nu_T(x) \vee \nu_T(y) \), for all \(x \) and \(y \) in \(G \).

4.2.9 Theorem: Let \((G, \cdot)\) and \((G', \cdot)\) be any two groups. If \(f : G \to G' \) is a homomorphism, then the homomorphic image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A \) of \(G \) is an intuitionistic L-fuzzy subgroup of \(G' \).

Proof: Let \((G, \cdot)\) and \((G', \cdot)\) be any two groups and \(f : G \to G' \) be a homomorphism. That is \(f(xy) = f(x)f(y) \), for all \(x \) and \(y \) in \(G \).

Let \(V = f(T^A_{(\alpha, \beta)}) \), where \(T^A_{(\alpha, \beta)} \) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A \) of \(G \).

We have to prove that \(V \) is an intuitionistic L-fuzzy subgroup of \(G' \).

Now, for \(f(x) \) and \(f(y) \) in \(G' \), we have

\[
\mu_V[f(x) \left(f(y)^{-1} \right)] = \mu_V[f(x) f(y^{-1})]
\]

\[
= \mu_V[f(x^{-1})]
\]

\[
\geq \mu^A_\alpha(x^{-1})
\]

\[
= \mu_A(x) + \alpha
\]

\[
\geq \{ \mu_A(x) \land \mu_A(y^{-1}) \} + \alpha
\]

\[
\geq \{ \mu_A(x) \land \mu_A(y) \} + \alpha
\]

\[
= (\mu_A(x) + \alpha) \land (\mu_A(y) + \alpha)
\]

\[
= \mu^A_\alpha(x) \land \mu^A_\alpha(y)
\]

which implies that \(\mu_V[f(x) \left(f(y)^{-1} \right)] \geq \mu_V(f(x)) \land \mu_V(f(y)) \), for all \(f(x) \) and \(f(y) \) in \(G' \).
And, \(\nu_V[f(x) (f(y)^{-1})] = \nu_V[f(x) f(y)^{-1}] \)

\[= \nu_V[f(x y^{-1})] \]

\[\leq \nu_{\beta}^\delta (x y^{-1}) \]

\[= \nu_A(x y^{-1}) + \beta \]

\[\leq \{ \nu_A(x) \lor \nu_A(y^{-1}) \} + \beta \]

\[\leq \{ \nu_A(x) \lor \nu_A(y) \} + \beta \]

\[= (\nu_A(x) + \beta) \lor (\nu_A(y) + \beta) \]

\[= \nu_{\beta}^\delta (x) \lor \nu_{\beta}^\delta (y) \]

which implies that \(\nu_V[f(x) (f(y)^{-1})] \leq \nu_V(f(x)) \lor \nu_V(f(y)) \), for all \(f(x) \) and \(f(y) \) in \(G \).

Therefore, \(V \) is an intuitionistic L-fuzzy subgroup of \(G \).

Hence the homomorphic image of an intuitionistic L-fuzzy translation of \(A \) of \(G \) is an intuitionistic L-fuzzy subgroup of \(G \).

4.2.10 Theorem: Let \((G, \cdot)\) and \((G', \cdot')\) be any two groups. If \(f : G \rightarrow G' \) is a homomorphism, then the homomorphic pre-image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(V \) of \(G' \) is an intuitionistic L-fuzzy subgroup of \(G \).

Proof: Let \((G, \cdot) \) and \((G', \cdot') \) be any two groups and \(f : G \rightarrow G' \) be a homomorphism. That is \(f(xy) = f(x)f(y) \), for all \(x \) and \(y \) in \(G \).

Let \(T = T\alpha,\beta = f(A) \), where \(T\alpha,\beta \) is an intuitionistic L-fuzzy translation of intuitionistic L-fuzzy subgroup \(V \) of \(G' \).

We have to prove that \(A \) is an intuitionistic L-fuzzy subgroup of \(G \).
Let \(x \) and \(y \) in \(G \). Then,

\[
\mu_A(xy^{-1}) = \mu_T(f(xy^{-1}))
\]

\[
= \mu_T(f(x)f(y^{-1}))
\]

\[
= \mu_T[f(x)(f(y))^{-1}]
\]

\[
= \mu_V[f(x)(f(y))^{-1}] + \alpha
\]

\[
\geq \{ \mu_V(f(x)) \wedge \mu_V(f(y)) \} + \alpha
\]

\[
= (\mu_V(f(x)) + \alpha) \wedge (\mu_V(f(y)) + \alpha)
\]

\[
= \mu_T(f(x)) \wedge \mu_T(f(y))
\]

\[
= \mu_A(x) \wedge \mu_A(y)
\]

which implies that \(\mu_A(xy^{-1}) \geq \mu_A(x) \wedge \mu_A(y) \), for all \(x \) and \(y \) in \(G \).

And, \(\nu_A(xy^{-1}) = \nu_T(f(xy^{-1})) \)

\[
= \nu_T(f(x)f(y^{-1}))
\]

\[
= \nu_T[f(x)(f(y))^{-1}]
\]

\[
= \nu_V[f(x)(f(y))^{-1}] + \beta
\]

\[
\leq \{ \nu_V(f(x)) \lor \nu_V(f(y)) \} + \beta
\]

\[
= (\nu_V(f(x)) + \beta) \lor (\nu_V(f(y)) + \beta)
\]

\[
= \nu_T(f(x)) \lor \nu_T(f(y))
\]

\[
= \nu_A(x) \lor \nu_A(y)
\]

which implies that \(\nu_A(xy^{-1}) \leq \nu_A(x) \lor \nu_A(y) \), for all \(x \) and \(y \) in \(G \).

Therefore, \(A \) is an intuitionistic L-fuzzy subgroup of \(G \).
Hence the homomorphic pre-image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(V \) of \(G^l \) is an intuitionistic L-fuzzy subgroup of \(G \).

4.2.11 Theorem: Let \((G,\ast)\) and \((G^l, \ast)\) be any two groups. If \(f : G \rightarrow G^l \) is an anti-homomorphism, then the anti-homomorphic image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A \) of \(G \) is an intuitionistic L-fuzzy subgroup of \(G^l \).

Proof: Let \((G,\ast)\) and \((G^l, \ast)\) be any two groups and \(f : G \rightarrow G^l \) be an anti-homomorphism. That is \(f(x \ast y) = f(y) f(x) \), for all \(x \) and \(y \) in \(G \).

Let \(V = f(T^{\alpha}_{(\alpha,\beta)}) \), where \(T^{\alpha}_{(\alpha,\beta)} \) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(A \) of \(G \).

We have to prove that \(V \) is an intuitionistic L-fuzzy subgroup of \(G^l \).

Now, for \(f(x) \) and \(f(y) \) in \(G^l \), we have

\[
\begin{align*}
\mu_V[f(x) (f(y)^{-1})] &= \mu_V[f(x) f(y^{-1})] \\
&= \mu_V[f(y^{-1}x)] \\
&\geq \mu^\times_{A^l}(y^{-1}x) \\
&= \mu_A(y^{-1}x) + \alpha \\
&\geq \{ \mu_A(x) \land \mu_A(y^{-1}) \} + \alpha \\
&\geq \{ \mu_A(x) \land \mu_A(y) \} + \alpha \\
&= (\mu_A(x) + \alpha) \land (\mu_A(y) + \alpha) \\
&= \mu^\times_{A^l}(x) \land \mu^\times_{A^l}(y)
\end{align*}
\]
which implies that \(\mu_V[f(x) (f(y)^{-1})] \geq \mu_V(f(x)) \land \mu_V(f(y)) \), for all \(f(x) \) and \(f(y) \) in \(G^l \).

And, \(\nu_V[f(x) (f(y)^{-1})] = \nu_V[f(x) f(y^{-1})] \)

\[
= \nu_V[f(y^{-1}x)] \\
\leq \nu_V^{\beta}(y^{-1}x) \\
= \nu_A(y^{-1}x) + \beta \\
\leq \{ \nu_A(x) \lor \nu_A(y^{-1}) \} + \beta \\
\leq \{ \nu_A(x) \lor \nu_A(y) \} + \beta \\
= (\nu_A(x) + \beta) \lor (\nu_A(y) + \beta) \\
= \nu_V^{\beta}(x) \lor \nu_V^{\beta}(y),
\]

which implies that \(\nu_V[f(x) (f(y)^{-1})] \leq \nu_V(f(x)) \lor \nu_V(f(y)) \), for all \(f(x) \) and \(f(y) \) in \(G^l \).

Therefore, \(V \) is an intuitionistic L-fuzzy subgroup of a group \(G^l \).

Hence the anti-homomorphic image of an intuitionistic L-fuzzy translation of \(A \) of \(G \) is an intuitionistic L-fuzzy subgroup of \(G^l \).

4.2.12 Theorem: Let \((G, \cdot)\) and \((G^l, \cdot)\) be any two groups. If \(f : G \to G^l \) is an anti-homomorphism, then the anti-homomorphic pre-image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup \(V \) of \(G^l \) is an intuitionistic L-fuzzy subgroup of \(G \).

Proof: Let \((G, \cdot)\) and \((G^l, \cdot)\) be any two groups and \(f : G \to G^l \) be an anti-homomorphism. That is \(f(xy) = f(y)f(x) \), for all \(x \) and \(y \) in \(G \).
Let $T = T^{\vee}_{(\alpha, \beta)} = \mathbb{I}(A)$, where $T^{\vee}_{(\alpha, \beta)}$ is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup V of G^i.

We have to prove that A is an intuitionistic L-fuzzy subgroup of G.

Let x and y in G. Then,

$$
\mu_A(x^{-1}y) = \mu_T(f(xy^{-1}))
$$

$$
= \mu_T(f(y^{-1}) f(x))
$$

$$
= \mu_T[(f(y^{-1}))^{-1} f(x)]
$$

$$
= \mu_V[f(f(y^{-1}))^{-1} f(x)] + \alpha
$$

$$
\geq \{ \mu_V(f(x)) \land \mu_V(f(y)) \} + \alpha
$$

$$
= (\mu_V(f(x)) + \alpha) \land (\mu_V(f(y)) + \alpha)
$$

$$
= \mu_T(f(x)) \land \mu_T(f(y))
$$

$$
= \mu_A(x) \land \mu_A(y),
$$

which implies that $\mu_A(x^{-1}y) \geq \mu_A(x) \land \mu_A(y)$, for all x and y in G.

And, $\nu_A(x^{-1}y) = \nu_T(f(xy^{-1}))$

$$
= \nu_T(f(y^{-1}) f(x))
$$

$$
= \nu_T[(f(y^{-1}))^{-1} f(x)]
$$

$$
= \nu_V[(f(f(y^{-1}))^{-1} f(x)] + \beta
$$

$$
\leq (\nu_V(f(x)) \lor \nu_V(f(y))) + \beta
$$

$$
= (\nu_V(f(x)) + \beta) \lor (\nu_V(f(y)) + \beta)
$$

$$
= \nu_T(f(x)) \lor \nu_T(f(y))
$$

$$
= \nu_A(x) \lor \nu_A(y)
$$

which implies that $\nu_A(x^{-1}y) \leq \nu_A(x) \lor \nu_A(y)$, for all x and y in G.

124
Therefore, A is an intuitionistic L-fuzzy subgroup of G.

Hence the anti-homomorphic pre-image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy subgroup V of G^l is an intuitionistic L-fuzzy subgroup of G.

4.2.13 Theorem: Let (G, \cdot) and (G^l, \cdot) be any two groups. If $f : G \rightarrow G^l$ is a homomorphism, then the homomorphic image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy normal subgroup A of G is an intuitionistic L-fuzzy normal subgroup of G^l.

Proof: Let (G, \cdot) and (G^l, \cdot) be any two groups and $f : G \rightarrow G^l$ be a homomorphism. That is $f(xy) = f(x)f(y)$, for all x and y in G.

Let $V = f(T^A_{(\alpha, \beta)})$, where $T = T^A_{(\alpha, \beta)}$ is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy normal subgroup A of G.

We have to prove that V is an intuitionistic L-fuzzy normal subgroup of G^l.

Now, for $f(x)$ and $f(y)$ in G^l,

clearly V is an intuitionistic L-fuzzy subgroup of G^l.

We have $\mu_V(f(x) f(y)) = \mu_V(f(xy))$,

\[\geq \mu_T(xy) \]

\[= \mu_A(xy) + \alpha, \]

\[= \mu_A(yx) + \alpha \]

\[= \mu_T(yx) \]

\[\leq \mu_V(f(yx)) \]

\[= \mu_V(f(y) f(x)), \]
which implies that \(\mu_V(f(x)f(y)) = \mu_V(f(y)f(x)) \), for all \(f(x) \) and \(f(y) \) in \(G^l \).

And, \(\nu_V(f(x)f(y)) = \nu_V(f(xy)) \),

\[
\leq \nu_T(xy) \\
= \nu_A(xy) + \beta, \\
= \nu_A(yx) + \beta \\
= \nu_T(yx) \\
\geq \nu_V(f(yx)) \\
= \nu_V(f(y)f(x))
\]

which implies that \(\nu_V(f(x)f(y)) = \nu_V(f(y)f(x)) \), for all \(f(x) \) and \(f(y) \) in \(G^l \).

Therefore, \(V \) is an intuitionistic L-fuzzy normal subgroup of a group \(G^l \).

Hence the homomorphic image of an intuitionistic L-fuzzy translation of \(A \) of \(G \) is an intuitionistic L-fuzzy normal subgroup of \(G^l \).

4.2.14 Theorem: Let \((G,\cdot)\) and \((G^l,\cdot^l)\) be any two groups. If \(f : G \to G^l \) is a homomorphism, then the homomorphic pre-image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy normal subgroup \(V \) of \(G^l \) is an intuitionistic L-fuzzy normal subgroup of \(G \).

Proof: Let \((G,\cdot)\) and \((G^l,\cdot^l)\) be any two groups and \(f : G \to G^l \) be a homomorphism. That is \(f(xy) = f(x)f(y) \), for all \(x \) and \(y \) in \(G \).

Let \(T = T_{(\alpha,\beta)}^V = f(A) \), where \(T_{(\alpha,\beta)}^V \) is an intuitionistic L-fuzzy translation of intuitionistic L-fuzzy normal subgroup \(V \) of \(G^l \).

We have to prove that \(A \) is an intuitionistic L-fuzzy normal subgroup of \(G \).

Let \(x \) and \(y \) in \(G \). Then,
clearly A is an intuitionistic L-fuzzy subgroup of G,

$$\mu_A(xy) = \mu_T(f(xy))$$

$$= \mu_V(f(xy)) + \alpha$$

$$= \mu_V(f(x)f(y)) + \alpha$$

$$= \mu_V(f(y)f(x)) + \alpha$$

$$= \mu_V(f(xy)) + \alpha$$

$$= \mu_T(f(xy))$$

$$= \mu_A(yx),$$

which implies that $\mu_A(xy) = \mu_A(yx)$, for all x and y in G.

And $\nu_A(xy) = \nu_T(f(xy))$

$$= \nu_V(f(xy)) + \beta$$

$$= \nu_V(f(x)f(y)) + \beta$$

$$= \nu_V(f(y)f(x)) + \beta$$

$$= \nu_V(f(xy)) + \beta$$

$$= \nu_T(f(xy))$$

$$= \nu_A(yx),$$

which implies that $\nu_A(xy) = \nu_A(yx)$, for all x and y in G.

Therefore, A is an intuitionistic L-fuzzy normal subgroup of G.

Hence the homomorphic pre-image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy normal subgroup V of G^l is an intuitionistic L-fuzzy normal subgroup of G.
4.2.15 Theorem: Let \((G, \cdot)\) and \((G^1, \cdot)\) be any two groups. If \(f : G \rightarrow G^1\) is an anti-homomorphism, then the anti-homomorphic image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy normal subgroup \(A\) of \(G\) is an intuitionistic L-fuzzy normal subgroup of \(G^1\).

Proof: Let \((G, \cdot)\) and \((G^1, \cdot)\) be any two groups and \(f : G \rightarrow G^1\) be an anti-homomorphism. That is \(f(xy) = f(y)f(x)\), for all \(x, y \in G\).

Let \(V = f(T^d_{(\alpha, \beta)})\), where \(T^d_{(\alpha, \beta)}\) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy normal subgroup \(A\) of \(G\).

We have to prove that \(V\) is an intuitionistic L-fuzzy normal subgroup of \(G^1\).

Now, for \(f(x)\) and \(f(y)\) in \(G^1\), clearly \(V\) is an intuitionistic L-fuzzy subgroup of \(G^1\). We have

\[
\mu_V(f(x)f(y)) = \mu_V(f(y)f(x)) \\
\geq \mu_T(yx) \\
= \mu_A(yx) + \alpha \\
= \mu_A(xy) + \alpha \\
= \mu_T(xy) \\
\leq \mu_V(f(xy)) \\
= \mu_V(f(y)f(x))
\]

which implies that \(\mu_V(f(x)f(y)) = \mu_V(f(y)f(x))\), for \(f(x)\) and \(f(y)\) in \(G^1\).
And \(\nu(f(x) f(y)) = \nu(f(y) f(x)) \)

\[\leq \nu(f(y) x) \]

\[= \nu(y x) + \beta \]

\[= \nu(x y) + \beta \]

\[= \nu(x y) \]

\[\geq \nu(f(x) y) \]

\[= \nu(f(y) f(x)) \]

which implies that \(\nu(f(x) f(y)) = \nu(f(y) f(x)) \), for \(f(x) \) and \(f(y) \) in \(G^I \).

Therefore, \(V \) is an intuitionistic L-fuzzy normal subgroup of a group \(G^I \).

Hence the anti-homomorphic image of an intuitionistic L-fuzzy translation of \(A \) of \(G \) is an intuitionistic L-fuzzy normal subgroup of \(G^I \).

4.2.16 Theorem: Let \((G, \cdot) \) and \((G^I, \cdot) \) be any two groups. If \(f : G \rightarrow G^I \) is an anti-homomorphism, then the anti-homomorphic pre-image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy normal subgroup \(V \) of \(G^I \) is an intuitionistic L-fuzzy normal subgroup of \(G \).

Proof: Let \((G, \cdot) \) and \((G^I, \cdot) \) be any two groups and \(f : G \rightarrow G^I \) is an anti-homomorphism. That is \(f(x y) = f(y) f(x) \), for all \(x \) and \(y \) in \(G \).

Let \(T = T^F_{(a, \beta)} = f(A) \), where \(T^F_{(a, \beta)} \) is an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy normal subgroup \(V \) of \(G^I \).

We have to prove that \(A \) is an intuitionistic L-fuzzy normal subgroup of \(G \).

Let \(x \) and \(y \) in \(G \).

Then, clearly \(A \) is an intuitionistic L-fuzzy subgroup of \(G \),

129
\[\mu_A(xy) = \mu_T(f(xy)) \]
\[= \mu_V(f(xy)) + \alpha \]
\[= \mu_V(f(y)f(x)) + \alpha \]
\[= \mu_V(f(x)f(y)) + \alpha \]
\[= \mu_V(f(yx)) + \alpha \]
\[= \mu_T(f(yx)) \]
\[= \mu_A(yx), \]

which implies that \(\mu_A(xy) = \mu_A(yx) \), for all \(x \) and \(y \) in \(G \).

And \(\nu_A(xy) = \nu_T(f(xy)) \)
\[= \nu_V(f(xy)) + \beta \]
\[= \nu_V(f(y)f(x)) + \beta \]
\[= \nu_V(f(x)f(y)) + \beta \]
\[= \nu_V(f(yx)) + \beta \]
\[= \nu_T(f(yx)) \]
\[= \nu_A(yx), \]

which implies that \(\nu_A(xy) = \nu_A(yx) \), for all \(x \) and \(y \) in \(G \).

Therefore, \(A \) is an intuitionistic L-fuzzy normal subgroup of \(G \).

Hence the anti-homomorphic pre-image of an intuitionistic L-fuzzy translation of an intuitionistic L-fuzzy normal subgroup \(V \) of \(G \) is an intuitionistic L-fuzzy normal subgroup of \(G \).