Fig 1a. MS Excel spread sheet showing concentration and current and it’s solution for equation (5) for typical parameters of $\alpha=0.5$ and $K=0.01$
Fig 1b. MS Excel spread sheet showing saturated and unsaturated regions in a single sheet.
Fig 2a. Dimensionless non–steady state substrate concentration $u(\chi, \tau)$ vs. χ (obtained using equation (18) and equations (A2 and A4) of Appendix–A (refer ref [2])) for various values of τ: $\alpha=0.1$ and $K=0.01$
Fig 2b. Dimensionless non-steady state substrate concentration $u(\chi, \tau)$ vs. χ (obtained using equation (18) and equations (A2 and A4) of Appendix-A (refer ref [2]) for various values of τ: $\alpha=0.1$ and $K=1$.
Fig 2c. Dimensionless non–steady state substrate concentration $u(\chi, \tau)$ vs. χ (obtained using equation (18) and equations (A2 and A4) of Appendix–A (refer ref [2])) for various values of τ: $\alpha=0.1$ and $K=50$
Fig 2d. Dimensionless non-steady state substrate concentration $u(\chi, \tau)$ vs. χ (obtained using equation (18) and equations (A2 and A4) of Appendix A (refer ref [2])) for various values of τ: $\alpha = 15$ and $K=0.01$
Fig 2e. Dimensionless non–steady state substrate concentration $u(\chi, \tau)$ vs. χ (obtained using equation (18) and equations (A2 and A4) of Appendix–A (refer ref [2])) for various values of τ: $\alpha=15$ and $K=1$
Fig 2f. Dimensionless non–steady state substrate concentration $u(\chi, \tau)$ vs. χ (obtained using equation (18) and equations (A2 and A4) of Appendix–A (refer ref [2])) for various values of τ: $\alpha=15$ and $K=50$.
Fig 3a. Current $y(\tau)$ vs. τ (calculated using equation (18) and equation (A3) of Appendix-A (refer ref [2])) for $\alpha = 0.1$ and the values of: $K=0.01$, $K=0.05$, $K=0.1$, $K=0.5$.
Fig 3b. Current $y(\tau)$ vs. τ (calculated using equation (18) and equation (A3) of Appendix–A (refer ref [2])) for $\alpha = 0.1$ and the values of: $K=1, K=5, K=10, K=20$
Fig 4a. Current $y(\tau)$ vs. τ (calculated using equation (18) and equation (A6) of Appendix-A (refer ref [2]) for $\alpha = 15$ and the values of: $K=0.01$, $K=0.05$, $K=0.1$, $K=0.5$
Fig 4b. Current $y(\tau)$ vs. τ (calculated using equation (18) and equation (A3) of Appendix-A (refer ref [2])) for $\alpha = 15$ and the values of: $K=1, K=5, K=10, K=20$
Fig 5a. Dimensionless non–steady state substrate concentration $u(\chi, \tau), v(\chi, \tau)$ vs. χ (obtained using equations (19a and 19b) for coupled equations (13a) and (13b)) for various values of $\tau: \alpha=0.1$ and $K=0.01$
Fig 5b. Dimensionless non-steady state substrate concentration $u(\chi, \tau), v(\chi, \tau)$ vs. χ (obtained using equations (19a and 19b) for coupled equations (13a) and (13b)) for various values of τ: b) $\alpha=0.1$ and $K=50$
Fig 5c. Dimensionless non-steady state substrate concentration $u(\chi, \tau), v(\chi, \tau)$ vs. χ (obtained using equations (19a and 19b) for coupled equations (13a) and (13b)) for various values of τ: $\alpha = 15$ and $K = 0.01$
Fig 5d. Dimensionless non–steady state substrate concentration $u(\chi, \tau), v(\chi, \tau)$ vs. χ (obtained using equations (19a and 19b) for coupled equations (13a) and (13b)) for various values of τ: $\alpha=15$ and $K=50$
Fig 6a. Comparison of dimensionless steady state substrate concentration $u(\rho)$ vs. ρ (obtained using equation (20) and equation (12) (Limiting case of Lyons[5])) for various values of $K=0.1$
Fig 6b. Comparison of dimensionless steady state substrate concentration $u(\rho)$ vs. ρ (obtained using equation (20) and equation (12) (Limiting case of Lyons[5])) for various values of $K=50$.
Fig 7a. Dimensionless steady state substrate concentration $u(\rho)$ vs. ρ (obtained using equation (21)) for various values of α and K: $\alpha=0.1$ and $K=0.1$, $K=50$.
Fig 7b. Dimensionless steady state substrate concentration $u(\rho)$ vs. ρ (obtained using equation (21)) for various values of α and K: $\alpha=15$ and $K=0.1$, $K=50$.
Fig 8a. Dimensionless non-steady state substrate concentration $u(\rho),v(\rho)$ vs. ρ (obtained using equations (22a and 22b) for coupled equations (16a) and (16b)) for various values of α and K: $\alpha=0.1$ and $K=0.1$, $K=50$
Fig 8b. Dimensionless non-steady state substrate concentration $u(\rho), v(\rho)$ vs. ρ (obtained using equations (22a and 22b) for coupled equations (16a) and (16b)) for various values of α and K: $\alpha=15$ and $K=0.1, K=50$