CHAPTER IV

HOMOMORPHISM ON FUZZY JOIN SEMI L-IDEAL

4.1 INTRODUCTION

In this chapter the concept of fuzzy join semi L-ideal homomorphism in fuzzy join semi L-ideal is introduced and the invariant property of fuzzy join semi L-ideal is derived. Fuzzy join semi L-cosest in join semi L-ideal, fuzzy join semi L-quotient ideal of join semi L-ideal and the properties of fuzzy join semi L-ideal are discussed. Some related theorems are established.

Definition: 4.1.1

Let \((A, \lor)\) and \((A', \lor)\) be two fuzzy join semilattices. Let \(f\) be a fuzzy join semi L-ideal homomorphism from a fuzzy join semi L-ideal of \(A\) onto a fuzzy join semi L-ideal of \(A'\). If \(S(\mu)\) and \(S(\sigma)\) are fuzzy join semi L-ideals of \(A\) then the following is true:

\[f [S(\mu) \lor S(\sigma)] = f [S(\mu)] \lor f [S(\sigma)], \forall S(\mu), S(\sigma) \in A. \]

Definition: 4.1.2

A one-one and onto fuzzy join semi L-ideal homomorphism is called a fuzzy join semi L-ideal isomorphism.

Thorem: 4.1.3

Let \(f\) be a fuzzy join semi L-ideal homomorphism from a fuzzy join semi L-ideal of \(A\) onto a fuzzy join semi L-ideal of \(A\). If \(S(\mu)\) and \(S(\sigma)\) are fuzzy join semi L-ideals of \(A\), then the following are true:
(i) \(f [S(\mu) \vee S(\sigma)] = f [S(\mu)] \vee f [S(\sigma)] \)

(ii) \(f [S(\mu) \cap S(\sigma)] \subseteq f [S(\mu)] \cap f [S(\sigma)] \), with equality if atleast one of \(S(\mu) \) or \(S(\sigma) \) is \(f \)-invariant.

Proof:

Let \(y \in A' \) and let \(\varepsilon > 0 \) be given.

(i) Let \(S(\alpha) = \{ f [S(\mu) \vee S(\sigma)] (y) \} \) and \(S(\beta) = \{ f [S(\mu)] \vee f [S(\sigma)] \} (y) \)

Then \(S(\alpha) - \varepsilon < \max_{x \in f^{-1}(y)} [S(\mu) \vee S(\sigma)] (x) \)

\(\Rightarrow S(\alpha) - \varepsilon < [S(\mu) \vee S(\sigma)] (x_0) \) for some \(x_0 \in A \) such that \(f(x_0) = y \)

\(= \max \{ \min \{ S[\mu(a)], S[\sigma(b)] \} \}, \) where \(a, b \in A \)

\(\Rightarrow S(\alpha) - \varepsilon < \min \{ S[\mu(a_0)], S[\sigma(b_0)] \} \) \(\cdots (1) \)

for some \(a_0, b_0 \in A \) such that \(x_0 = a_0 \vee b_0 \).

Now,

\(S(\beta) = \max_{y = y_1 \vee y_2} \{ \min \{ f [S(\mu(y_1)] \}, f [S(\sigma(y_2)] \} \}, \) where \(y_1, y_2 \in A' \)

\(\Rightarrow S(\beta) \geq \min \{ f [S(\mu)] f(a_0), f [S(\sigma)] f(b_0) \}, \) since \(y = f(x_0) = f(a_0) \vee f(b_0) \)

\(= \min \{ f^{-1}[S(\mu(a_0))], f^{-1}[S(\sigma(b_0))] \} \)

\(\geq \min \{ S[\mu(a_0)], S[\sigma(b_0)] \} \)

\(> S(\alpha) - \varepsilon, \) by (1).

\(\Rightarrow S(\beta) \leq S(\alpha). \) Since \(\varepsilon \) is arbitrary. \(\cdots \)

Next, to show that \(S(\beta) \leq S(\alpha) \)
\[S(\beta) - \varepsilon < \max \left\{ \min \left\{ f(S(\mu(y_1))), f(S(\sigma(y_2))) \right\} \right\}, \text{where } y_1, y_2 \in A'. \]

\[y = y_1 \lor y_2 \]

\[\Rightarrow S(\beta) - \varepsilon < f \{ S(\mu(y_1)) \} \text{ and } f \{ S(\sigma(y_2)) \}, \text{for some } y_1, y_2 \in A \text{ such that } y = y_1 \lor y_2. \]

\[\Rightarrow S(\beta) - \varepsilon < S(\mu(x_1)) \text{ and } S(\sigma(x_2)), \text{for some } x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2), \text{by definition.} \]

\[\Rightarrow S(\beta) - \varepsilon < \min \{ S(\mu(x_1)), S(\sigma(x_2)) \} \]

\[\leq [S(\mu) \lor S(\sigma)](x_1 \lor x_2), \text{by definition.} \]

\[\leq \max \{ [S(\mu) \lor S(\sigma)](x) \}, \text{Since } x_1 \lor x_2 \in f^{-1}(y) \]

\[x \in f^{-1}(y) \]

\[= f [S(\mu) \lor S(\sigma)](y) \]

\[= S(\alpha) \]

\[\Rightarrow S(\beta) - \varepsilon \leq S(\alpha). \]

\[\Rightarrow S(\beta) \leq S(\alpha), \text{Since } \varepsilon \text{ is arbitrary } \]

Therefore (1) and (2) imply \(S(\alpha) = S(\beta). \)

\[\Rightarrow f [S(\mu) \lor S(\sigma)] = f [S(\mu)] \lor f [S(\sigma)]. \]

(i) It is true that, \(S(\mu) \cap S(\sigma) \subseteq S(\mu) \) and \(S(\mu) \cap S(\sigma) \subseteq S(\sigma) \)

\[\Rightarrow f [S(\mu) \cap S(\sigma)] \subseteq f [S(\mu)] \text{ and } f [S(\mu) \cap S(\sigma)] \subseteq f [S(\sigma)] \]

\[\Rightarrow f [S(\mu) \cap S(\sigma)] \subseteq f [S(\mu)] \cap f [S(\sigma)] \]----------------------(4).
Next assume that, $S(\sigma)$ is f-invariant.

Then $f^{-1}f \left[S(\sigma) \right] = S(\sigma)$

Now put $S(\alpha) = \{ f \left[S(\mu) \right] \cap f \left[S(\sigma) \right] \} (y)$ and $S(\beta) = \{ f \left[S(\mu) \right] \cap f \left[S(\sigma) \right] \} (y)$

Then $S(\alpha) - \varepsilon < \max \{ \{ f (S[\mu(y)]) \}, \{ f (S[\sigma(y)]) \} \}$

$$= \max \{ \max \{ f \left[S(\mu) \right], f \left[S(\sigma) \right] \} \}$$

$\Rightarrow S(\alpha) - \varepsilon < S[\mu(z)]$, for some $z \in f^{-1}(y)$ and $S(\alpha) - \varepsilon < \{ f (S[\sigma(y)]) \}$

$\Rightarrow S(\alpha) - \varepsilon < S[\mu(z)]$ and $S(\alpha) - \varepsilon < f (S[\sigma(z)]) = f^{-1}f (S[\sigma(z)]) = S[\sigma(z)]$

$\Rightarrow S(\alpha) - \varepsilon < \max \{ S[\mu(z)], S[\sigma(z)] \}$

$$= \left[S(\mu) \cap S(\sigma) \right] (z)$$

$\Rightarrow S(\alpha) - \varepsilon < \max \left[S(\mu) \cap S(\sigma) \right] (z)$, Since $z \in f^{-1}(y)$.

$$= f \left[S(\mu) \cap S(\sigma) \right] (y)$$

$$= S(\beta)$$

Hence $f \left[S(\mu) \right] \cap f \left[S(\sigma) \right] \subseteq f \left[S(\mu) \cap S(\sigma) \right]$ -----------------------------(5).

Therefore (6) and (7) imply $f \left[S(\mu) \cap S(\sigma) \right] = f \left[S(\mu) \right] \cap f \left[S(\sigma) \right]$.

Theorem: 4.1.4

If f is a fuzzy join semi L-ideal homomorphism from a fuzzy join semi L-ideal of A onto a fuzzy join semi L-ideal of A' then for each fuzzy join semi L-ideal $S(\mu)$ of A, $f \left[S(\mu) \right]$ is a fuzzy join semi L-ideal of A' and for each fuzzy join semi L-ideal $S(\mu')$ of A', $f^{-1}[S(\mu')]$ is a fuzzy join semi L-ideal of A.

98
Proof:

Let f be a fuzzy join semi L-ideal homomorphism from a fuzzy join semi L-ideal of A onto fuzzy join semi L-ideal of A'. Assume that S(µ) is a fuzzy join semi L-ideal of A and define S[µ'f(x)] = S[µ(x)] and for y ∈ A', S[µ'(y)] = S[µ(y)].

To prove: S(µ') is a fuzzy join semi L-ideal of A' corresponding to a fuzzy join semi L-ideal S(µ) of A.

(i.e) to prove

S(µ') [f(x) ∨ f(y)] ≥ max { S[µ'f(x)] , { S[µ'f(y)] } }

(i.e) to prove

S(µ') [f(x) ∨ f(y)] = S[µ'f(x ∨ y)], Since f is a fuzzy join semi L-ideal homomorphism.

= S[µ(x ∨ y)], Since S[µ'f(x)] = S[µ(x)]

≥ max { S[µ(x)], S[µ(y)] }

= max { S[µ'f(x)] , S[µ'f(y)] }.

Therefore S(µ') is a fuzzy join semi L-ideal of A'.

Let S(µ') is a fuzzy join semi L-ideal of A'.

To Prove: S(µ'^{-1}) is a fuzzy join semi L-ideal of A.

(i) S(µ) [f^{-1}(x) ∨ f^{-1}(y)] = S[µ'^{-1}(x ∨ y)]

= S[µ'(x ∨ y)]. Since S[µ'^{-1}(x)] = S[µ'(x)].
\[\geq \max \{ S[\mu'(x)], S[\mu'(y)] \} \]

Hence, \(S(\mu f^{-1}) \) is a fuzzy join semi L-ideal of \(A \) corresponding to \(S(\mu') \) of \(A' \).

Definition: 4.1.5

Let \(f \) be any function from a fuzzy join semi L-ideal of \(A \) onto a fuzzy join semi L-ideal of \(A' \). Then \(S(\mu) \) is called \(f \)-invariant if \(S[f(\mu(x))] = S[f(\mu(y))] \) then \(S[\mu(x)] = S[\mu(y)] \) where \(x, y \in A \).

Theorem 4.1.6

Let \(f \) be a fuzzy join semi L-ideal isomorphism from a fuzzy join semi L-ideal of \(A \) onto a fuzzy join semi L-ideal of \(A' \). Let \(S(\mu) \) and \(S(\mu') \) be fuzzy join semi L-ideals of \(A \) and \(A' \) respectively and let \(S(\mu) \) be \(f \)-invariant. Let \(t = S[\mu(x)] = S[\mu'(f(x))] \). Then the following statements are true:

(i) \(F_{f[S(\mu)]} = \{ f[S(\mu)] / t \in \text{Im } S(\mu) \} \) and

(ii) \(F_{f^{-1}[S(\mu)]} = \{ f^{-1}[S(\mu')]/ s \in \text{Im } S(\mu') \} \)

Proof:

(i) \(t \in \text{Im } S(\mu) \Leftrightarrow S[\mu(x)] = t \), for some \(x \in A \).

\[\Leftrightarrow f^{-1}(S[\mu(x)]) = t \]

\[\Leftrightarrow S[\mu f(x)] = t \]

\[\Leftrightarrow S[\mu(y)] = t \]

\[\Leftrightarrow t \in \text{Im } S(\mu) = S(\mu') \]

Therefore, \(\text{Im } S(\mu) = \text{Im } S(\mu') \)
Claim: $f[S(\mu_t)] = [f\{S(\mu)\}]_t$

Let $y \in f[S(\mu_t)] \Rightarrow y = f(x)$, for some $x \in S(\mu_t)$, $x \in A$.

$\Rightarrow y = f(x)$ and $S[\mu(x)] \geq t$

$\Rightarrow \text{Sup} \{S[\mu(z)] / y = f(z)\} \geq t$

$\Rightarrow f(S[\mu(y)]) \geq t$

$\Rightarrow y \in f[S(\mu)]_t$

Therefore, $f[S(\mu)]_t \subseteq f[S(\mu_t)]$

Also, $[f(S(\mu))]_t \subseteq f[S(\mu_t)] \geq t$

$\Rightarrow \{f[S(\mu)]\} f(x) \geq t$, Since $y = f(x)$, for some $x \in A$.

$\Rightarrow f^{-1}f\{S[\mu(x)]\} \geq t$

$\Rightarrow S[\mu(x)] \geq t$

$\Rightarrow x \in S(\mu_t)$

$\Rightarrow y = f(x) \in f[S(\mu_t)]$

Hence $F_{f[S(\mu)]} = \{[f\{S(\mu)\}]_t / t \in \text{Im} f[S(\mu)]\}$

$= \{f[S(\mu_t)] / t \in \text{Im} f[S(\mu)]\}$

(ii) $s \in f^{-1}[S(\mu')] \Leftrightarrow$ there exists $x \in A$ such that $f^{-1}\{S[\mu'(x)]\} = s$

$\Leftrightarrow S[\mu'f(x)] = s$, for some $x \in A$. 101
\[\Leftrightarrow S[\mu'(ff^1(x))] = s \]

\[\Leftrightarrow S[\mu'(y)] = s \]

\[\Leftrightarrow s \in \text{Im} S(\mu') \]

Next,

\[x \in f^{-1}[S(\mu')] \iff f^{-1}\{S[\mu'(x)]\} \geq s \]

\[\Leftrightarrow S[\mu'f(x)] \geq s \]

\[\Leftrightarrow f(x) \in S(\mu'_s) \]

\[\Leftrightarrow x \in f^{-1}[S(\mu'_s)] \]

Hence \(F_{f'[S(\mu')] = \{f^{-1}[S(\mu')]_s \in \text{Im} f^{-1}[S(\mu')] \} = \{f^{-1}[S(\mu'_s)]_s \in \text{Im} S(\mu'_s) \} \]

Theorem: 4.1.7

Let \(f \) be a join semi L-ideal homomorphism from a fuzzy join semi L-ideal of \(A \) onto a fuzzy join semi L-ideal of \(A' \). If \(S(\mu') \) and \(S(\theta') \) are any two fuzzy join semi L-ideal of \(A' \), then \(S(\mu'f^{-1}) \lor S(\theta'f^{-1}) \subseteq [S(\mu') \lor S(\theta')] (f^{-1}) \)

Proof:

Let \(x \in A \) and let \(\epsilon > 0 \) be given.

Let \(S(\alpha) = \{S[\mu'f^{-1}] \lor S[\theta'f^{-1}] \} (y) \) and \(S(\beta) = \{S(\mu') \lor S(\theta') \} (f^{-1}) \} (y) \)

Then \(S(\alpha) - \epsilon < \min \{ \max \{S[\mu'f^{-1}(y_1)], S[\theta'f^{-1}(y_2)]\}, \ y_1, y_2 \in A' \} = \min \{ \max \{S[\mu'f^{-1}(y_1)], S[\theta'f^{-1}(y_2)]\}, \ y_1, y_2 \in A' \} \)
\[\leq [S(\mu') \lor S(\theta')] [f^{-1}(y_1 \lor y_2)] \]

\[= [S(\mu') \lor S(\theta')] [f^{-1}(y)] \]

\[= S(\beta) \]

\[\Rightarrow S(\alpha) \leq S(\beta), \text{Since } \varepsilon \text{ is arbitrary.} \]

Hence, \(S[\mu'f^{-1}] \lor S[\theta'f^{-1}] \subseteq [S(\mu') \lor S(\theta')] f^{-1} \)

4.2 FUZZY JOIN SEMI L-QUOTIENT IDEAL

Definition: 4.2.1

Let \(S(\mu) \) be any fuzzy join semi L-ideal of a fuzzy join semi L-ideal of \(A \). Then the fuzzy join semi L-ideal \(S(\mu_x^*) \) of \(A \), where \(x \in A \) defined by \(S[\mu_x^*(y)] = S[\mu(y \lor x)] \), for all \(y \in A \) is termed as the fuzzy join semi L-quotient ideal determined by \(x \) and \(S(\mu) \).

Remark: 4.2.2

If \(S(\mu) \) is constant, then \(A_{S(\mu)} = S[\mu^*(0)] \).

Theorem: 4.2.3

Let \(S(\mu) \) be any fuzzy join semi L-ideal of a fuzzy join semilattice \(A \). Then \(S(\mu_x^*) \), for all \(x \in A \), the fuzzy join semi L-quotient ideal \(S(\mu) \) of \(A \) is also a fuzzy join semi L-ideal of \(A \).
Proof:

Given $S(\mu)$ be any fuzzy join semi L-ideal of A and $S(\mu_x^\ast)$ is a fuzzy join semi L-quotient of x in $A / S(\mu)$.

To prove: $S(\mu_x^\ast)$ is a fuzzy join semi L-ideal.

That is to prove,

(i) For all $y, z \in A$.

$$S[\mu_x^\ast(y \lor z)] = S(\mu)[(y \lor z) \lor x],$$

by definition.

$$= S(\mu)[(y \lor x) \lor (z \lor x)]$$

$$\geq \max \{S[\mu(y \lor x)], S[\mu(z \lor x)]\}$$

$$\geq \max \{S[\mu_x^\ast(y)], S[\mu_x^\ast(z)]\}$$

Hence $S(\mu_x^\ast)$ is a fuzzy join semi L-ideal of A.

Lemma: 4.2.4

If $S(\mu)$ be any fuzzy join semi L-ideal of a fuzzy join semi L-ideal of A then the following holds:

$$S[\mu(x)] = S[\mu(0)] \Leftrightarrow S(\mu_x^\ast) = S[\mu(0)], \forall x \in A.$$

Proof:

Let $S(\mu) = S[\mu(0)]$ -----------(1).

$$S[\mu(y)] \leq S[\mu(0)]$""""""---------(2).

From (1) and (2), We have $S[\mu(y)] \leq S[\mu(x)]$.

Case (i):

If $S[\mu(y)] < S[\mu(x)]$, then

$$S[\mu(y \lor x)] \geq \max \{S[\mu(y)], S[\mu(x)]\}$""""""
= S[\mu(x)].

Case (ii):

If \(S[\mu(y)] = S[\mu(x)] \), then \(x, y \in S[\mu(x)] \), where \(t = S[\mu(0)] \).

Hence \(S[\mu(y \lor x)] \geq \max \{ S[\mu(y)], S[\mu(x)] \} \)

= \(S[\mu(x)] \)

= \(S[\mu(0)] \)

Therefore \(S[\mu(y \lor x)] = S[\mu(0)] = S[\mu(y)] = S[\mu(x)] \)

Thus in either case,

\(S[\mu(y \lor x)] = S[\mu(x)] \), \(\forall \ y \in A. \)

\(S[\mu^*(y)] = S[\mu(x)] = S[\mu^*(0)] \)

Therefore, \(S(\mu^*_x) = S(\mu_0^*) \)

The converse is straightforward.

Lemma: 4.2.5

If \(S(\mu) \) is a fuzzy join semi L-ideal of a fuzzy join semi L-ideal of \(A \), then \(A / S(\mu_t) \cong A_{S(\mu)} \), where \(t = S[\mu(0)] \).

Proof:

To prove \(f : A \rightarrow A_{S(\mu)} \) is a map defined by \(f(x) = S(\mu_x^*) \), for all \(x \in A \) is an onto fuzzy join semi L-ideal homomorphism.

(i.e) to prove

\(f(x \lor y) = S(\mu_{x \lor y}^*)

= S[\mu_{x \lor y}^*(z)] \)
\[= S[\mu((x \lor y) \lor z)] \]
\[= S[\mu(x \lor z)] \lor S[\mu(y \lor z)] \]
\[= S[\mu(x \lor z)] \lor S[\mu(y \lor z)] \]
\[= S(\mu^*_x) \lor S(\mu^*_y) \]

(ii) \[f(x \lor y) = S(\mu^*_{x \lor y}) \]
\[= S[\mu^*_{x \lor y} (z)] \]
\[= S[\mu((x \lor y) \lor z)] \]
\[= S[\mu(x \lor y)] \lor S[\mu(y \lor z)] \]
\[= S[\mu(x \lor z)] \lor S[\mu(y \lor z)] \]
\[= S(\mu^*_x) \lor S(\mu^*_y) \]

Therefore, \(f \) is a fuzzy join semi L-ideal homomorphism.

Now \(f(x) = S(\mu^*_x) \iff S(\mu^*_x) = S(\mu^*_0) \)

\[\iff S[\mu(x)] = S[\mu(0)] \]

This shows that kernel of \(f \) equal \(S(\mu_t) \).

Therefore \(A / S(\mu_t) \cong A_{S(\mu)} \).

Theorem: 4.2.6

Let \(f \) be a fuzzy join semi L-ideal homomorphism from a fuzzy join semi L-ideal \(A \) onto a fuzzy join semi L-ideal of \(A' \) and let \(S(\mu) \) be any \(f \)-invariant fuzzy join semi L-ideal of \(A \), then \(A_{S(\mu)} \cong A'[S(\mu)] \).
Proof:

Since $S(\mu)$ is f-invariant, $K_f \subseteq S(\mu_t)$, where $t = S[\mu(0)]$.

Now, $f(S[\mu(0')]) = t$, because

$$f(S[\mu(0')]) = \sup S[\mu(x)], x \in f^{-1}(0').$$

$$= S[\mu(0)]$$

Next, $f[S(\mu)] = f[S(\mu_t)]$, Since $f(x) \in f[S(\mu)] \Leftrightarrow f\{ S(\mu[f(x)]) \} \geq t$

$$\Leftrightarrow f^{-1}(S[\mu(x)]) \geq t$$

$$\Leftrightarrow S[\mu(x)] \geq t, as f^{-1}f[S(\mu)] = S(\mu)$$

$$\Leftrightarrow x \in S(\mu_t)$$

$$\Leftrightarrow f(x) \in f[S(\mu_t)], because K_f \subseteq S(\mu_t).$$

Therefore, by theorem 4.2.5

$$A_{S(\mu)} \cong \frac{A}{S(\mu)} and A'_{f(S(\mu))} \cong A'/[f(S(\mu))]:$$

Also, note that $A/S(\mu) \cong A'_{f(S(\mu))}$

From this, it can be shown that $A_{S(\mu)} \cong \frac{A'}{S(\mu)} \cong A'_{f(S(\mu))} \cong A'/[f(S(\mu))]: \cong A'_{f(S(\mu))}$

$A_{S(\mu)} \cong A'_{f(S(\mu))}$
Definition: 4.2.7

Let $S(\mu)$ be any fuzzy join semi L-ideal of A. The fuzzy join semi L-quotient ideal $S(\mu)$ of $A_{S(\mu)}$ ($= A / S(\mu_t)$) is defined by $S(\mu^*[x \lor S(\mu_t)]) = S[\mu(x)]$, $\forall x \in A$,

$S(\mu_t) = \{ x / S[\mu(x)] = S[\mu(0)] = t \}$.

Theorem: 4.2.8

If $S(\mu)$ is any fuzzy join semi L-ideal of a join semilattice A then the fuzzy join subset $S(\mu^*)$ of $A_{S(\mu)}$ defined by $S*[x \lor S(\mu_t)] = S[\mu(x)]$, where $x \in A$.

Proof:

Given that $S(\mu)$ is a fuzzy join semi L-ideal of a join semilattice A.

To show that the fuzzy join semi L-ideal $S(\mu^*)$ of $A_{S(\mu)}$ defined by $S*[x \lor S(\mu_t)]$, where $x \in A$ is a fuzzy join semi L-ideal of A.

For this, let $x, y \in A$.

Then,

\begin{align*}
(i) \quad S*[x \lor S(\mu_t)] \lor (y \lor S(\mu_t)) &= S*[x \lor S(\mu_t)] \\
&= S[\mu(x)] \\
&\geq \max \{ S[\mu(x)], S[\mu(y)] \}
\end{align*}

Therefore $S(\mu^*)$ is a fuzzy join semi L-ideal of $A_{S(\mu)}$.

108
Theorem : 4.2.9

(i) Let $S(\mu)$ be any fuzzy join semi L-ideal of a fuzzy join semilattice A and let $t = S[\mu(0)]$. Then the fuzzy join semi L-ideal $S(\mu^*)$ of $A / S(\mu_t)$ defined by $S[\mu^*(x \vee S(\mu_t))]$, for all $x \in A$ is a fuzzy join semi L-ideal of $A / S(\mu_t)$.

(ii) If B is a fuzzy join semilattice of A and $S(\theta)$ is a fuzzy join semi L-ideal of A / B such that $S[\theta(x \vee A)] = A$ only when $x \in A$, then there exists a fuzzy join semi L-ideal $S(\mu)$ of A such that $S(\mu_t) = B$, $t = S[\mu(0)]$ and $S(\theta) = S(\mu^*)$.

Proof:

(i) Since $S(\mu)$ is a fuzzy join semi L-ideal of A, $S(\mu_t)$ is an fuzzy level join semi L-ideal of A.

Now,

$x \vee S(\mu_t) = y \vee S(\mu_t)$

$\Rightarrow x \vee y \in S(\mu_t)$

$\Rightarrow S[\mu(x \vee y)] = t = S[\mu(0)]$

$\Rightarrow S[\mu(x)] = S[\mu(y)]$

$\Rightarrow S[\mu^*(x \vee S(\mu_t))] = S[\mu^*(y \vee S(\mu_t))]$

Therefore, $S(\mu^*)$ is well defined.

Next, for all $x, y \in A$.

$S[\mu^*\{x \vee S(\mu_t) \vee (y \vee S(\mu_t))\}] = S[\mu(\mu(x) \vee S(\mu_t))]$

$= S[\mu(x \vee y)]$

$\geq \max \{ S[\mu(x)], S[\mu(y)] \}$

109
\[
= \max \{ S[\mu^* (x \lor S(\mu_t))], S[\mu^* (y \lor S(\mu_t))] \}
\]

\[
S[\mu^* (x \lor S(\mu_t)) \lor (y \lor S(\mu_t))] = S[\mu^* ((x \lor y) \lor S(\mu_t))]
\]

\[
= S[\mu (x \lor y)]
\]

\[
\geq \max \{ S[\mu(x)], S[\mu(y)] \}
\]

\[
= \max \{ S[\mu^* (x \lor S(\mu_t))], S[\mu^* (y \lor S(\mu_t))] \}
\]

(ii) Define \(S(\mu) : A \to [0, 1]\) be \(S[\mu(x)] = S[\theta(x \lor B)]\)

\[
\geq \max \{ S[\mu(x)], S[\mu(y)] \}
\]

\[
S[\mu (x \lor y)] = S[\theta(x \lor y \lor B)]
\]

\[
\geq \max \{ S[\theta(x \lor B)], S[\theta(y \lor B)] \}
\]

\[
= \max \{ S[\mu(x)], S[\mu(y)] \}
\]

Therefore, \(S(\mu)\) is a fuzzy join semi L-ideal.

Also, \(S(\mu_t) = B\)

\(x \in S(\mu_t) \iff S[\mu(x)] = S[\mu(0)]\)

\(\iff S[\theta(x \lor B)] = S[\theta(B)]\)

\(\iff x \in B\)

Now,

\[
S[\mu^* (x \lor S(\mu_t))] = S[\mu(x)]
\]

\[
= S[\theta(x \lor B)].
\]

\[
= S[\theta(x \lor S(\mu_t))]
\]
Hence, \(S(\mu^*) = S(\theta) \).

Theorem: 4.2.10

Let \(A \) be any fuzzy join semilattice. Let \(S(\mu^*) \) be any fuzzy join semi L-ideal of the quotient fuzzy join semilattice \(A / K \), where \(K \) is any fuzzy subset of \(A \). Then corresponding to \(S(\mu^*) \) in \(A / K \), there exists a fuzzy join semi L-ideal in \(A \).

Let \(S(\mu^*) \) be any fuzzy join semi L-ideal of \(A / K \).

Define the fuzzy join semi L-ideal \(S(\theta) \) of \(A \) by

\[
S(\theta)(x) = S(\mu^* (x \lor k)), \quad \forall x \in A.
\]

To Prove: \(S(\theta) \) is a fuzzy join semi L-ideal of \(A \).

\[
S(\theta(x \lor y)) = S(\mu^*((x \lor y) \lor k))
\]

\[
= S(\mu^* ((x \lor k) \lor (y \lor k)))
\]

\[
\geq \max \{ S(\mu^*(x \lor k)), S(\mu^*(y \lor k)) \}
\]

\[
= \max \{ S(\theta(x)), S(\theta(y)) \}
\]

Therefore, \(S(\theta(x \lor y)) \geq \max \{ S(\theta(x)), S(\theta(y)) \} \)

Hence \(S(\theta) \) is a fuzzy join semi L-ideal of \(A \).

Theorem: 4.2.11

Let \(f \) be a fuzzy join semi L-ideal homomorphism from a semi L-ideal of \(A \) onto a fuzzy join semi L-ideal of \(A' \) and let \(S(\mu) \) be any fuzzy join semi L-ideal of \(A \) such that \(S(\mu_t) \subseteq K_\theta \), where \(t = S(\mu(0)) \). Then there exists a unique fuzzy join semi L-ideal homomorphism \(f' \) from \(A_{S(\mu)} \) onto \(A' \) with the property that \(f = f \circ g \) where \(g(x) = S(\mu^*_x), \quad \forall x \in A \).
Proof:

Define a function $f' : A_{S(\mu)} \rightarrow A'$ by $f'[S(\mu_x^*)] = f(x), \ \forall \ x \in A.$

Now, $S(\mu_x^*) = S(\mu_y^*)$

$\Rightarrow S(\mu_{x\lor y}^*) = S(\mu_0^*)$

$\Rightarrow S[\mu(x\lor y)] = S[\mu(0)] = t$

$\Rightarrow x\lor y \in S(\mu_{t}) \subseteq K_f$

$\Rightarrow f'[S(\mu_x^*)] = f'[S(\mu_y^*)]$

Therefore f' is well defined.

Since f is onto, f' is also onto.

Therefore, f' is fuzzy join semi L-ideal homomorphism.

Now,

$f(x) = f'[S(\mu_x^*)]$

$= f'[g(x)]$

$= [f' \circ g] (x), \ \forall \ x \in A.$

$\xymatrix{ A_{S(\mu)} \ar[rd]^f \ar[rd]_{f'} & \\
\quad & g \ar[ru]^f}$
Finally, to show that this factorization of f is unique.

Suppose that $f = h \circ g$ for some function $h : A_{S(\mu)} \rightarrow A'$

Then $f' \left[S(\mu_x^*) \right] = f(x)$

$$= \left[h \circ g \right] (x)$$

$$= h \left[g(x) \right]$$

$$= h \left[S(\mu_x^*) \right], \forall x \in A.$$

Hence, there is a unique fuzzy join semi L-ideal f' from $A_{S(\mu)}$ onto A' with the property that $f = f' \circ g$, where $g(x) = S(\mu_x^*), \forall x \in A$.

Corollary : 4.2.12

The induced f' is a fuzzy join semi L-ideal isomorphism iff $S(\mu)$ is f-invariant.

Proof:

Let f' be one-one.

Claim:

Let $x, y \in A$.

$f(x) = f(y)$

$\Rightarrow f' \left[S(\mu_x^*) \right] = f' \left[S(\mu_y^*) \right]$

$\Rightarrow S(\mu_x^*) = S(\mu_y^*)$

$\Rightarrow S(\mu_{xy}^*) = S(\mu_0^*)$
\[\Rightarrow S[\mu(x\lor y)] = S[\mu(0)] \]

\[\Rightarrow S[\mu(x)] = S[\mu(y)] \]

On the otherhand, let \(S(\mu) \) be \(f \)-invariant.

Claim: \(f' \) is one-one.

\[S[\mu(x)] = S[\mu(y)] \]

\[\Rightarrow f'(S[\mu(x)]) = f'(S[\mu(y)]) \]

\[\Rightarrow f'[S(\mu_x^*)] = f'[S(\mu_y^*)] \]

\[\Rightarrow S[\mu(x)] = S[\mu(y)], \text{Since } f \text{ is invariant.} \]

\[\Rightarrow S(\mu_x^*) = S(\mu_y^*) \]

\[\Rightarrow f \text{ is one – one.} \]