Chapter - 5

(1,2)*-g-CLOSED AND (1,2)*-g*-OPEN MAPS

5.1 INTRODUCTION

Malghan [40] introduced the concept of generalized closed maps in topological spaces. Devi [18] introduced and studied sg-closed maps and gs-closed maps. Recently, Sheik John [76] defined ω-closed maps and studied some of their properties. In this chapter, we introduce (1,2)*-g-closed maps, (1,2)*-g*-open maps, (1,2)*-g*-closed maps and (1,2)*-g*-open maps in bitopological spaces and obtain certain characterizations of these classes of maps. In last section, we introduce (1,2)*-g*-homeomorphisms and prove that the set of all (1,2)*-g*-homeomorphisms forms a group under the operation composition of functions.

5.2 PRELIMINARIES

Definition 5.2.1

A map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

(i) (1,2)*-g-closed [68] if $f(V)$ is (1,2)*-g-closed in Y, for every $\tau_{1,2}$-closed set V of X.

(ii) (1,2)*-sg-closed [65] if $f(V)$ is (1,2)*-sg-closed in Y, for every $\tau_{1,2}$-closed set V of X.

(iii) (1,2)*-gs-closed [65] if $f(V)$ is (1,2)*-gs-closed in Y, for every $\tau_{1,2}$-closed set V of X.

(iv) (1,2)*-ψ-closed [51] if $f(V)$ is (1,2)*-ψ-closed in Y, for every $\tau_{1,2}$-closed set V of X.
5.3 (1,2)*-\textit{g} -CLOSED MAPS

Definition 5.3.1 [Definition 3.2.1]

A map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is said to be (1,2)*-\textit{g} -closed if the image of every \(\tau_{1,2} \)-closed set in \(X \) is (1,2)*-\textit{g} -closed in \(Y \).

Example 5.3.2

Let \(X = Y = \{a, b, c\} \), \(\tau_1 = \{\emptyset, X, \{a\}\} \) and \(\tau_2 = \{\emptyset, X, \{b\}\} \). Then the sets in \(\{\emptyset, X, \{a\}, \{b\}\} \) are called \(\tau_{1,2} \)-open and the sets in \(\{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\} \) are called \(\tau_{1,2} \)-closed. Let \(\sigma_1 = \{\emptyset, Y\} \) and \(\sigma_2 = \{\emptyset, Y, \{a, b\}\} \). Then the sets in \(\{\emptyset, Y, \{a, b\}\} \) are called \(\sigma_{1,2} \)-open in \(Y \) and the sets in \(\{\emptyset, Y, \{c\}\} \) are called \(\sigma_{1,2} \)-closed in \(Y \). Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be the identity map. Then \(f \) is an (1,2)*-\textit{g} -closed map.

Proposition 5.3.3

A map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is (1,2)*-\textit{g} -closed if and only if (1,2)*-\textit{g} -\textit{cl}(f(A)) \subseteq f(\tau_{1,2}-\textit{cl}(A)) for every subset \(A \) of \(X \).

Proof

Suppose that \(f \) is (1,2)*-\textit{g} -closed and \(A \subseteq X \). Then \(\tau_{1,2}-\textit{cl}(A) \) is \(\tau_{1,2} \)-closed in \(X \) and so \(f(\tau_{1,2}-\textit{cl}(A)) \) is (1,2)*-\textit{g} -closed in \(Y \). We have \(f(A) \subseteq f(\tau_{1,2}-\textit{cl}(A)) \) and by Propositions 1.6.9 and 1.6.10, (1,2)*-\textit{g} -\textit{cl}(f(A)) \subseteq (1,2)*-\textit{g} -\textit{cl}(f(\tau_{1,2}-\textit{cl}(A))) = f(\tau_{1,2}-\textit{cl}(A)).

Conversely, let \(A \) be any \(\tau_{1,2} \)-closed set in \(X \). Then \(A = \tau_{1,2}-\textit{cl}(A) \) and so \(f(A) = f(\tau_{1,2}-\textit{cl}(A)) \supseteq (1,2)*-\textit{g} -\textit{cl}(f(A)) \), by hypothesis. We have \(f(A) \subseteq (1,2)*-\textit{g} -\textit{cl}(f(A)) \). Therefore \(f(A) = (1,2)*-\textit{g} -\textit{cl}(f(A)) \). That is \(f(A) \) is (1,2)*-\textit{g} -closed by Proposition 1.6.9 and hence \(f \) is (1,2)*-\textit{g} -closed.
Proposition 5.3.4

Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be a map such that \((1,2)^*\mathcal{g}\text{-cl}(f(A)) \subseteq f(\tau_{1,2}\text{-cl}(A)) \) for every subset \(A \subseteq X \). Then the image \(f(A) \) of a \(\tau_{1,2}\)-closed set \(A \) in \(X \) is \((1,2)^*\mathcal{g}\text{-closed} \) in \(Y \).

Proof

Let \(A \) be a \(\tau_{1,2}\)-closed set in \(X \). Then by hypothesis \((1,2)^*\mathcal{g}\text{-cl}(f(A)) \subseteq f(\tau_{1,2}\text{-cl}(A)) = f(A) \) and so \((1,2)^*\mathcal{g}\text{-cl}(f(A)) = f(A) \). Therefore \(f(A) \) is \((1,2)^*\mathcal{g}\text{-closed} \) in \(Y \).

Theorem 5.3.5

A map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is \((1,2)^*\mathcal{g}\text{-closed} \) if and only if for each subset \(S \) of \(Y \) and each \(\tau_{1,2}\)-open set \(U \) containing \(f^{-1}(S) \) there is an \((1,2)^*\mathcal{g}\text{-open} \) set \(V \) of \(Y \) such that \(S \subseteq V \) and \(f^{-1}(V) \subseteq U \).

Proof

Suppose \(f \) is \((1,2)^*\mathcal{g}\text{-closed} \). Let \(S \subseteq Y \) and \(U \) be an \(\tau_{1,2}\)-open set of \(X \) such that \(f^{-1}(S) \subseteq U \). Then \(V = (f(U^c))^c \) is an \((1,2)^*\mathcal{g}\text{-open} \) set containing \(S \) such that \(f^{-1}(V) \subseteq U \).

For the converse, let \(F \) be a \(\tau_{1,2}\)-closed set of \(X \). Then \(f^{-1}((f(F))^c) \subseteq F^c \) and \(F^c \) is \(\tau_{1,2}\)-open. By assumption, there exists an \((1,2)^*\mathcal{g}\text{-open} \) set \(V \) in \(Y \) such that \((f(F))^c \subseteq V \) and \(f^{-1}(V) \subseteq F^c \) and so \(F \subseteq (f^{-1}(V))^c \). Hence \(V^c \subseteq f(F) \subseteq f(f^{-1}(V))^c \subseteq V^c \) which implies \(f(F) = V^c \). Since \(V^c \) is \((1,2)^*\mathcal{g}\text{-closed} \), \(f(F) \) is \((1,2)^*\mathcal{g}\text{-closed} \) and therefore \(f \) is \((1,2)^*\mathcal{g}\text{-closed} \).
Proposition 5.3.6

If \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is (1,2)*-sg-irresolute \((1,2)*-\bar{g}\text{-closed and } A\) is an \((1,2)*-\bar{g}\text{-closed subset of } X\), then \(f(A) \) is \((1,2)*-\bar{g}\text{-closed in } Y\).

Proof

Let \(U \) be an \((1,2)*\text{-sg-open set in } Y\) such that \(f(A) \subseteq U\). Since \(f \) is \((1,2)*\text{-sg-irresolute, } f^{-1}(U) \) is an \((1,2)*\text{-sg-open set containing } A\). Hence \(\tau_{1,2}\text{-cl}(A) \subseteq f^{-1}(U) \) as \(A \) is \((1,2)*-\bar{g}\text{-closed in } X\). Since \(f \) is \((1,2)*-\bar{g}\text{-closed, } f(\tau_{1,2}\text{-cl}(A)) \) is an \((1,2)*-\bar{g}\text{-closed set contained in the } (1,2)*\text{-sg-open set } U\), which implies that \(\tau_{1,2}\text{-cl}(f(\tau_{1,2}\text{-cl}(A))) \subseteq U \) and hence \(\tau_{1,2}\text{-cl}(f(A)) \subseteq U \). Therefore, \(f(A) \) is \((1,2)*-\bar{g}\text{-closed set in } Y\).

The following example shows that the composition of two \((1,2)*-\bar{g}\text{-closed maps need not be a } (1,2)*-\bar{g}\text{-closed.}

Example 5.3.7

Let \(X, Y \) and \(f \) be as in Example 5.3.2. Let \(Z = \{a, b, c\} \) and \(\eta_1 = \{\phi, Z, \{c\}\} \) and \(\eta_2 = \{\phi, Z, \{a, b\}\} \). Then the sets in \(\{\phi, Z, \{c\}, \{a, b\}\} \) are called \(\eta_{1,2}\text{-open and the sets in } \{\phi, Z, \{c\}, \{a, b\}\} \) are called \(\eta_{1,2}\text{-closed. Let } g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2) \) be the identity map. Then both \(f \) and \(g \) are \((1,2)*-\bar{g}\text{-closed maps but their composition } g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2) \) is not an \((1,2)*-\bar{g}\text{-closed map, since for the } \tau_{1,2}\text{-closed set } \{b, c\} \text{ in } X, (g \circ f)(\{b, c\}) = \{b, c\} \text{, which is not an } (1,2)*-\bar{g}\text{-closed set in } Z.\)
Corollary 5.3.8

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be $(1,2)^*\cdot \tilde{g}$-closed and $g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be $(1,2)^*\cdot \tilde{g}$-closed and $(1,2)^*\cdot \text{sg}$-irresolute, then their composition $g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is $(1,2)^*\cdot \tilde{g}$-closed.

Proof

Let A be a $\tau_{1,2}$-closed set of X. Then by hypothesis $f(A)$ is an $(1,2)^*\cdot \tilde{g}$-closed set in Y. Since g is both $(1,2)^*\cdot \tilde{g}$-closed and $(1,2)^*\cdot \text{sg}$-irresolute by Proposition 5.3.6, $g(f(A)) = (g \circ f)(A)$ is $(1,2)^*\cdot \tilde{g}$-closed in Z and therefore $g \circ f$ is $(1,2)^*\cdot \tilde{g}$-closed.

Proposition 5.3.9

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be $(1,2)^*\cdot \tilde{g}$-closed maps where Y is a $T_{(1,2)^*\cdot \tilde{g}}$-space. Then their composition $g \circ f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(1,2)^*\cdot \tilde{g}$-closed.

Proof

Let A be a $\tau_{1,2}$-closed set of X. Then by assumption $f(A)$ is $(1,2)^*\cdot \tilde{g}$-closed in Y. Since Y is a $T_{(1,2)^*\cdot \tilde{g}}$-space, $f(A)$ is $\sigma_{1,2}$-closed in Y and again by assumption $g(f(A))$ is $(1,2)^*\cdot \tilde{g}$-closed in Z. That is $(g \circ f)(A)$ is $(1,2)^*\cdot \tilde{g}$-closed in Z and so $g \circ f$ is $(1,2)^*\cdot \tilde{g}$-closed.

Proposition 5.3.10

If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(1,2)^*\cdot \tilde{g}$-closed, $g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ is $(1,2)^*\cdot \tilde{g}$-closed (resp. $(1,2)^*\cdot \text{g}$-closed, $(1,2)^*\cdot \psi$-closed, $(1,2)^*\cdot \text{sg}$-closed and $(1,2)^*\cdot \text{gs}$-closed) and Y is a $T_{(1,2)^*\cdot \tilde{g}}$-space, then their composition $g \circ f : (X, \tau_1, \tau_2)$
\((Z, \eta_1, \eta_2) \) is \((1,2)^*\)-\(g\)-closed (resp. \((1,2)^*-g\)-closed, \((1,2)^*-\psi\)-closed, \((1,2)^*-sg\)-closed and \((1,2)^*-gs\)-closed).

Proof

Similar to Proposition 5.3.9.

Proposition 5.3.11

Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be a \((1,2)^*\)-closed map and \(g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2) \) be an \((1,2)^*-g\)-closed map, then their composition \(g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2) \) is \((1,2)^*-g\)-closed.

Proof

Similar to Proposition 5.3.9.

Remark 5.3.12

If \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is an \((1,2)^*-g\)-closed and \(g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2) \) is \((1,2)^*-\tilde{\psi}\)-closed, then their composition need not be an \((1,2)^*-\tilde{g}\)-closed map as seen from the following example.

Example 5.3.13

Let \(X, Y \) and \(f \) be as in Example 5.3.2. Let \(Z = \{a, b, c\} \) and \(\eta_1 = \{\phi, Z, \{a\}\} \) and \(\eta_2 = \{\phi, Z, \{a, b\}\} \). Then the sets in \(\{\phi, Z, \{a\}\} \) are called \(\eta_{1,2}\)-open and the sets in \(\{\phi, Z, \{c\}, \{b, c\}\} \) are called \(\eta_{1,2}\)-closed. Let \(g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2) \) be the identity map. Then \(f \) is an \((1,2)^*-\tilde{g}\)-closed map and \(g \) is a \((1,2)^*-\tilde{\psi}\)-closed map. But their composition \(g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2) \) is not an \((1,2)^*-\tilde{g}\)-closed map, since for the \(\tau_{1,2}\)-closed set \(\{a, c\} \) in \(X \), \((g \circ f)(\{a, c\}) = \{a, c\} \), which is not an \((1,2)^*-\tilde{g}\)-closed set in \(Z \).
Theorem 5.3.14

Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) and \(g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2) \) be two maps such that their composition \(g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2) \) is an \((1,2)^*\)-\(\tilde{g} \)-closed map. Then the following statements are true.

(i) If \(f \) is \((1,2)^*\)-continuous and surjective, then \(g \) is \((1,2)^*\)-\(\tilde{g} \)-closed.

(ii) If \(g \) is \((1,2)^*\)-\(\tilde{g} \)-irresolute and injective, then \(f \) is \((1,2)^*\)-\(\tilde{g} \)-closed.

(iii) If \(f \) is \((1,2)^*\)-\(\tilde{g} \)-continuous, surjective and \((X, \tau)\) is a \((1,2)^*\)-\(T_\omega \)-space, then \(g \) is \((1,2)^*\)-\(\tilde{g} \)-closed.

(iv) If \(g \) is strongly \((1,2)^*\)-\(\tilde{g} \)-continuous and injective, then \(f \) is \((1,2)^*\)-closed.

Proof

(i) Let \(A \) be a \(\sigma_{1,2} \)-closed set of \(Y \). Since \(f \) is \((1,2)^*\)-continuous, \(f^1(A) \) is \(\tau_{1,2} \)-closed in \(X \) and since \(g \circ f \) is \((1,2)^*\)-\(\tilde{g} \)-closed, \((g \circ f)(f^1(A)) \) is \((1,2)^*\)-\(\tilde{g} \)-closed in \(Z \). That is \(g(A) \) is \((1,2)^*\)-\(\tilde{g} \)-closed in \(Z \), since \(f \) is surjective.

Therefore \(g \) is an \((1,2)^*\)-\(\tilde{g} \)-closed map.

(ii) Let \(B \) be a \(\tau_{1,2} \)-closed set of \(X \). Since \(g \circ f \) is \((1,2)^*\)-\(\tilde{g} \)-closed, \((g \circ f)(B) \) is \((1,2)^*\)-\(\tilde{g} \)-closed in \(Z \). Since \(g \) is \((1,2)^*\)-\(\tilde{g} \)-irresolute, \(g^{-1}((g \circ f)(B)) \) is \((1,2)^*\)-\(\tilde{g} \)-closed set in \(Y \). That is \(f(B) \) is \((1,2)^*\)-\(\tilde{g} \)-closed in \(Y \), since \(g \) is injective.

Thus \(f \) is an \((1,2)^*\)-\(\tilde{g} \)-closed map.

(iii) Let \(C \) be a \(\sigma_{1,2} \)-closed set of \(Y \). Since \(f \) is \((1,2)^*\)-\(\tilde{g} \)-continuous, \(f^1(C) \) is \((1,2)^*\)-\(\tilde{g} \)-closed in \(X \). Since \(X \) is a \((1,2)^*\)-\(T_\omega \)-space, \(f^1(C) \) is \(\tau_{1,2} \)-closed in \(X \) and so as in (i), \(g \) is an \((1,2)^*\)-\(\tilde{g} \)-closed map.
(iv) Let D be a $\tau_{1,2}$-closed set of X. Since $g \circ f$ is $(1,2)^*\cdot \bar{g}$-closed, $(g \circ f)(D)$ is $(1,2)^*\cdot \bar{g}$-closed in Z. Since g is strongly $(1,2)^*\cdot \bar{g}$-continuous, $g^{-1}((g \circ f)(D))$ is $\sigma_{1,2}$-closed in Y. That is $f(D)$ is $\sigma_{1,2}$-closed set in Y, since g is injective. Therefore f is a $(1,2)^*$-closed map.

In the next theorem we show that $(1,2)^*$-normality is preserved under $(1,2)^*$-continuous $(1,2)^*\cdot \bar{g}$-closed maps.

Theorem 5.3.15

If $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$-continuous, $(1,2)^*\cdot \bar{g}$-closed map from a $(1,2)^*$-normal space X onto a space Y, then Y is $(1,2)^*$-normal.

Proof

Let A and B be two disjoint $\sigma_{1,2}$-closed subsets of Y. Since f is $(1,2)^*$-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint $\tau_{1,2}$-closed sets of X. Since X is $(1,2)^*$-normal, there exist disjoint $\tau_{1,2}$-open sets U and V of X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since f is $(1,2)^*\cdot \bar{g}$-closed, by Theorem 5.3.5, there exist disjoint $(1,2)^*\cdot \bar{g}$-open sets G and H in Y such that $A \subseteq G$, $B \subseteq H$, $f^{-1}(G) \subseteq U$ and $f^{-1}(H) \subseteq V$. Since U and V are disjoint, $\sigma_{1,2}$-int(G) and $\sigma_{1,2}$-int(H) are disjoint $\sigma_{1,2}$-open sets in Y. Since A is $\sigma_{1,2}$-closed, A is $(1,2)^*$-sg-closed and therefore we have by Theorem 3.3.3, $A \subseteq \sigma_{1,2}$-int(G). Similarly $B \subseteq \sigma_{1,2}$-int(H) and hence Y is $(1,2)^*$-normal.

Analogous to an $(1,2)^*\cdot \bar{g}$-closed map, we have defined an $(1,2)^*\cdot \bar{g}$-open map as follows:

Definition 5.3.16 [Definition 3.2.1]

A map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be an $(1,2)^*\cdot \bar{g}$-open map if the image $f(A)$ is $(1,2)^*\cdot \bar{g}$-open in Y for each $\tau_{1,2}$-open set A in X.

88
Proposition 5.3.17

For any bijection \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \), the following statements are equivalent:

(i) \(f^{-1} : (Y, \sigma_1, \sigma_2) \rightarrow (X, \tau_1, \tau_2) \) is \((1,2)^*\)-\(g\)-continuous.

(ii) \(f \) is \((1,2)^*\)-\(g\)-open map.

(iii) \(f \) is \((1,2)^*\)-\(g\)-closed map.

Proof

(i) \(\Rightarrow\) (ii). Let \(U \) be an \(\tau_{1,2} \)-open set of \(X \). By assumption, \((f^{-1})^{-1}(U) = f(U)\) is \((1,2)^*\)-\(g\)-open in \(Y \) and so \(f \) is \((1,2)^*\)-\(g\)-open.

(ii) \(\Rightarrow\) (iii). Let \(F \) be a \(\tau_{1,2} \)-closed set of \(X \). Then \(F^c \) is \(\tau_{1,2} \)-open set in \(X \). By assumption, \(f(F^c) \) is \((1,2)^*\)-\(g\)-open in \(Y \). That is \(f(F^c) = (f(F))^c \) is \((1,2)^*\)-\(g\)-open in \(Y \) and therefore \(f(F) \) is \((1,2)^*\)-\(g\)-closed in \(Y \). Hence \(f \) is \((1,2)^*\)-\(g\)-closed.

(iii) \(\Rightarrow\) (i). Let \(F \) be a \(\tau_{1,2} \)-closed set of \(X \). By assumption, \(f(F) \) is \((1,2)^*\)-\(g\)-closed in \(Y \). But \(f(F) = (f^{-1})^{-1}(F) \) and therefore \(f^{-1} \) is \((1,2)^*\)-\(g\)-continuous.

In the next two theorems, we obtain various characterizations of \((1,2)^*\)-\(g\)-open maps.

Theorem 5.3.18

Assume that the collection of all \((1,2)^*\)-\(g\)-open sets of \(Y \) is closed under arbitrary union. Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a map. Then the following statements are equivalent:

(i) \(f \) is an \((1,2)^*\)-\(g\)-open map.
(ii) For a subset \(A \) of \(X \), \(f(\tau_{1,2}\text{-int}(A)) \subseteq (1,2)^*\text{-}g\text{-int}(f(A)) \).

(iii) For each \(x \in X \) and for each \(\tau_{1,2}\text{-neighborhood} U \) of \(x \) in \(X \), there exists an \((1,2)^*\text{-}g\text{-neighborhood} W \) of \(f(x) \) in \(Y \) such that \(W \subseteq f(U) \).

Proof

(i) \(\Rightarrow \) (ii). Suppose \(f \) is \((1,2)^*\text{-}g\text{-open}\). Let \(A \subseteq X \). Then \(\tau_{1,2}\text{-int}(A) \) is \(\tau_{1,2}\text{-open} \) in \(X \) and so \(f(\tau_{1,2}\text{-int}(A)) \) is \((1,2)^*\text{-}g\text{-open} \) in \(Y \). We have \(f(\tau_{1,2}\text{-int}(A)) \subseteq f(A) \). Therefore by Proposition 1.5.3, \(f(\tau_{1,2}\text{-int}(A)) \subseteq (1,2)^*\text{-}g\text{-int}(f(A)) \).

(ii) \(\Rightarrow \) (iii). Suppose (ii) holds. Let \(x \in X \) and \(U \) be an arbitrary \(\tau_{1,2}\text{-neighborhood} \) of \(x \) in \(X \). Then there exists an \(\tau_{1,2}\text{-open set} \) \(G \) such that \(x \in G \subseteq U \). By assumption, \(f(G) = f(\tau_{1,2}\text{-int}(G)) \subseteq (1,2)^*\text{-}g\text{-int}(f(G)) \). This implies \(f(G) = (1,2)^*\text{-}g\text{-int}(f(G)) \). By Proposition 1.5.3, we have \(f(G) \) is \((1,2)^*\text{-}g\text{-open} \) in \(Y \). Further, \(f(x) \in f(G) \subseteq f(U) \) and so (iii) holds, by taking \(W = f(G) \).

(iii) \(\Rightarrow \) (i). Suppose (iii) holds. Let \(U \) be any \(\tau_{1,2}\text{-open set in} \ X \), \(x \in U \) and \(f(x) = y \). Then \(y \in f(U) \) and for each \(y \in f(U) \), by assumption there exists an \((1,2)^*\text{-}g\text{-neighborhood} \) \(W_y \) of \(y \) in \(Y \) such that \(W_y \subseteq f(U) \). Since \(W_y \) is an \((1,2)^*\text{-}g\text{-neighborhood} \) of \(y \), there exists an \((1,2)^*\text{-}g\text{-open set} \) \(V_y \) in \(Y \) such that \(y \in V_y \subseteq W_y \). Therefore, \(f(U) = \bigcup \{ V_y : y \in f(U) \} \) is an \((1,2)^*\text{-}g\text{-open set in} \ Y \). Thus \(f \) is an \((1,2)^*\text{-}g\text{-open map} \).

Theorem 5.3.19

A map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is \((1,2)^*\text{-}g\text{-open} \) if and only if for any subset \(S \) of \(Y \) and for any \(\tau_{1,2}\text{-closed set} \) \(F \) containing \(f^{-1}(S) \), there exists an \((1,2)^*\text{-}g\text{-closed set} \) \(K \) of \(Y \) containing \(S \) such that \(f^{-1}(K) \subseteq F \).
Proof

Similar to Theorem 5.3.5.

Corollary 5.3.20

A map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \((1,2)^*\bar{g}\)-open if and only if
\[
f^{-1}((1,2)^*\bar{g}\text{-}\text{cl}(B)) \subseteq \tau_{1,2}\text{-}\text{cl}(f^{-1}(B))
\]
for each subset \(B \) of \(Y \).

Proof

Suppose that \(f \) is \((1,2)^*\bar{g}\)-open. Then for any \(B \subseteq Y \), \(f^{-1}(B) \subseteq \tau_{1,2}\text{-}\text{cl}(f^{-1}(B)) \).

By Theorem 5.3.19, there exists an \((1,2)^*\bar{g}\)-closed set \(K \) of \(Y \) such that \(B \subseteq K \) and \(f^{-1}(K) \subseteq \tau_{1,2}\text{-}\text{cl}(f^{-1}(B)) \). Therefore, \(f^{-1}((1,2)^*\bar{g}\text{-}\text{cl}(B)) \subseteq (f^{-1}(K)) \subseteq \tau_{1,2}\text{-}\text{cl}(f^{-1}(B)) \), since \(K \) is an \((1,2)^*\bar{g}\)-closed set in \(Y \).

Conversely, let \(S \) be any subset of \(Y \) and \(F \) be any \(\tau_{1,2}\)-closed set containing \(f^{-1}(S) \). Put \(K = (1,2)^*\bar{g}\text{-}\text{cl}(S) \). Then \(K \) is an \((1,2)^*\bar{g}\)-closed set and \(S \subseteq K \). By assumption, \(f^{-1}(K) = f^{-1}((1,2)^*\bar{g}\text{-}\text{cl}(S)) \subseteq \tau_{1,2}\text{-}\text{cl}(f^{-1}(S)) \subseteq F \) and therefore by Theorem 5.3.19, \(f \) is \((1,2)^*\bar{g}\)-open.

Finally in this section, we define another new class of maps called \((1,2)^*\bar{g}^\ast\)-closed maps which are stronger than \((1,2)^*\bar{g}\)-closed maps.

Definition 5.3.21

A map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is said to be \((1,2)^*\bar{g}^\ast\)-closed if the image \(f(A) \) is \((1,2)^*\bar{g}\)-closed in \(Y \) for every \((1,2)^*\bar{g}\)-closed set \(A \) in \(X \).

For example the map \(f \) in Example 5.3.2 is an \((1,2)^*\bar{g}^\ast\)-closed map.
Remark 5.3.22

Since every $\tau_{1,2}$-closed set is an $(1,2)^*-\tilde{g}$-closed set we have $(1,2)^*-\tilde{g}^*$-closed map is an $(1,2)^*-\tilde{g}$-closed map. The converse is not true in general as seen from the following example.

Example 5.3.23

Let $X = Y = \{a, b, c\}$ $\tau_1 = \{\emptyset, X, \{a, b\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a, b\}\}$ are called $\tau_{1,2}$-open and the sets in $\{\emptyset, X, \{c\}\}$ are called $\tau_{1,2}$-closed.

Let $\sigma_1 = \{\emptyset, Y, \{a\}\}$ and $\sigma_2 = \{\emptyset, Y, \{a, b\}\}$. Then the sets in $\{\emptyset, Y, \{a\}\}$, $\{a, b\}$ are called $\sigma_{1,2}$-open and the sets in $\{\emptyset, Y, \{c\}\}$, $\{b, c\}$ are called $\sigma_{1,2}$-closed. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is an $(1,2)^*\tilde{g}$-closed but not $(1,2)^*\tilde{g}^*$-closed map. Since $\{a, c\}$ is $(1,2)^*\tilde{g}$-closed set in X, but its image under f is $\{a, c\}$ which is not $(1,2)^*\tilde{g}$-closed set in Y.

Proposition 5.3.24

A map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*\tilde{g}^*$-closed if and only if $(1,2)^*\tilde{g} - \text{cl}(f(A)) \subseteq f((1,2)^*\tilde{g} - \text{cl}(A))$ for every subset A of X.

Proof

Similar to Proposition 5.3.3.

Analogous to $(1,2)^*\tilde{g}^*$-closed map we can also define $(1,2)^*\tilde{g}^*$-open map.

Proposition 5.3.25

For any bijection $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:
(i) \(f^{-1} : (Y, \sigma_1, \sigma_2) \rightarrow (X, \tau_1, \tau_2) \) is \(\tilde{g} \)-irresolute.

(ii) \(f \) is \((1,2)^*\)-\(\tilde{g}^* \)-open map.

(iii) \(f \) is \((1,2)^*\)-\(\tilde{g}^* \)-closed map.

Proof

Similar to Proposition 5.3.17.

Proposition 5.3.26

If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \((1,2)^*\)-sg-irresolute and \((1,2)^*\)-\(\tilde{g} \)-closed, then it is an \((1,2)^*\)-\(\tilde{g}^* \)-closed map.

Proof

The proof follows from Proposition 5.3.6.

5.4 \((1,2)^*\)-\(\tilde{g}^* \)-HOMEOMORPHISMS

The notion of \((1,2)^*\)-homeomorphisms plays a very important role in bitopological spaces. By definition, an \((1,2)^*\)-homeomorphism between two bitopological spaces \((X, \tau_1, \tau_2)\) and \((Y, \sigma_1, \sigma_2)\) is a bijective map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) when \(f \) and \(f^{-1} \) are \((1,2)^*\)-continuous.

We introduce the following definition:

Definition 5.4.1

A bijection \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is said to be

(i) \((1,2)^*\)-\(\tilde{g} \)-homeomorphism if \(f \) is both \((1,2)^*\)-\(\tilde{g} \)-continuous and \((1,2)^*\)-\(\tilde{g} \)-open.

(ii) \((1,2)^*\)-\(\tilde{g}^* \)-homeomorphism if both \(f \) and \(f^{-1} \) are \((1,2)^*\)-\(\tilde{g} \)-irresolute.
We denote the family of all \((1,2)^*\)-homeomorphisms of a bitopological space \((X, \tau_1, \tau_2)\) onto itself by \((1,2)^*\)-h(X).

Theorem 5.4.2

Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)\) be a bijective \((1,2)^*\)-continuous map. Then the following are equivalent:

(i) \(f\) is an \((1,2)^*\)-open map.

(ii) \(f\) is an \((1,2)^*\)-homeomorphism.

(iii) \(f\) is an \((1,2)^*\)-closed map.

Proof

Follows from Proposition 5.3.17.

Proposition 5.4.3

If \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)\) and \(g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)\) are \((1,2)^*\)-homeomorphisms, then their composition \(g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)\) is also \((1,2)^*\)-homeomorphism.

Proof

Let \(U\) be \((1,2)^*\)-open set in \((Z, \eta_1, \eta_2)\). Now, \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)\), where \(V = g^{-1}(U)\). By hypothesis, \(V\) is \((1,2)^*\)-open in \(Y\) and so again by hypothesis, \(f^{-1}(V)\) is \((1,2)^*\)-open in \(X\). Therefore, \(g \circ f\) is \((1,2)^*\)-irresolute.

Also for an \((1,2)^*\)-open set \(G\) in \(X\), we have \((g \circ f)(G) = g(f(G)) = g(W)\), where \(W = f(G)\). By hypothesis \(f(G)\) is \((1,2)^*\)-open in \(Y\) and so again by hypothesis, \(g(f(G))\) is \((1,2)^*\)-open in \(Z\). That is \((g \circ f)(G)\) is \((1,2)^*\)-open in \(Z\).
and therefore \((g \circ f)^{-1}\) is \((1,2)^*-\tilde{g}^*\)-irresolute. Hence \(g \circ f\) is a \((1,2)^*-\tilde{g}^*\)-homeomorphism.

Theorem 5.4.4

The set \((1,2)^*-\tilde{g}^*\)-h(X) is a group under the composition of maps.

Proof

Define a binary operation \(*\) : \((1,2)^*-\tilde{g}^*\)-h(X) \times \((1,2)^*-\tilde{g}^*\)-h(X) \to \((1,2)^*-\tilde{g}^*\)-h(X) by \(f \ast g = g \circ f\) for all \(f, g \in (1,2)^*-\tilde{g}^*\)-h(X) and \(\circ\) is the usual operation of composition of maps. Then by Proposition 5.4.3, \(g \circ f \in (1,2)^*-\tilde{g}^*\)-h(X). We know that the composition of maps is associative and the identity map \(I : (X, \tau_1, \tau_2) \to (X, \tau_1, \tau_2)\) belonging to \((1,2)^*-\tilde{g}^*\)-h(X) serves as the identity element. If \(f \in (1,2)^*-\tilde{g}^*\)-h(X), then \(f^{-1} \in (1,2)^*-\tilde{g}^*\)-h(X) such that \(f \circ f^{-1} = f^{-1} \circ f = I\) and so inverse exists for each element of \((1,2)^*-\tilde{g}^*\)-h(X). Therefore, \(((1,2)^*-\tilde{g}^*\)-h(X), \(\circ\)) is a group under the operation of composition of maps.

Theorem 5.4.5

Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)\) be an \((1,2)^*-\tilde{g}^*\)-homeomorphism. Then \(f\) induces an \((1,2)^*\)-isomorphism from the group \((1,2)^*-\tilde{g}^*\)-h(X) on to the group \((1,2)^*-\tilde{g}^*\)-h(Y).

Proof

Using the map \(f\), we define a map \(\theta_f : (1,2)^*-\tilde{g}^*\)-h(X) \to (1,2)^*-\tilde{g}^*\)-h(Y) by \(\theta_f(h) = f \circ h \circ f^{-1}\) for every \(h \in (1,2)^*-\tilde{g}^*\)-h(X). Then \(\theta_f\) is a bijection. Further, for all \(h_1, h_2 \in (1,2)^*-\tilde{g}^*\)-h(X), \(\theta_f(h_1 \circ h_2) = f \circ (h_1 \circ h_2) \circ f^{-1} = (f \circ h_1 \circ f^{-1}) \circ (f \circ h_2 \circ f^{-1})\)
\[\theta_1(h_1) \circ \theta_2(h_2) \]. Therefore, \(\theta_f \) is a \((1,2)^*\)-homomorphism and so it is an \((1,2)^*\)-isomorphism induced by \(f \).

Theorem 5.4.6

\((1,2)^*\)-\(\tilde{g}^* \)-homeomorphism is an equivalence relation in the collection of all bitopological spaces.

Proof

Reflexivity and symmetry are immediate and transitivity follows from Proposition 5.4.3.