CONTENTS

Acknowledgements 1
List of Papers Published, Presented and Award 1
Preface 1

1. Introduction 1
1.1 Peculiarities of Liquid State 4
1.2 Evidence in X-ray Diffraction 6
1.3 Structural Differences between Solids, Liquids and Gases 8
1.4 Methods of Studying Molecular Interactions 9
1.5 Ultrasonic Study of Molecular Interactions 10
1.6 Liquid Mixtures 11
1.7 Brief Review 12

2. Experimental Procedure 13
2.1 Temperature of Study 13
2.2 Multi-component Liquid Mixtures 13
   2.2.1 Mole Fraction (x) 13
   2.2.2 Weight Fraction (w) 14
   2.2.3 Volume Fraction (φ) 14
2.3 Density Measurement (ρ) 14
2.4 Viscosity Measurement 15
2.5 Ultrasonic Velocity Measurement 16
2.6 Accuracy of Measurements 17
2.7 Error Analysis 18
   2.7.1 Percentage Deviation 18
   2.7.2 Molecular Interaction Parameter 18

3. Pure Liquids and Mixtures Studied 20
3.1 Introduction 20
3.2 Pure Liquids 23
   3.2.1 Cyclohexanone 23
   3.2.2 Hexane 24
3.2.3 Heptane 24
3.2.4 Benzaldehyde 25
3.2.5 Benzyl Chloride 25
3.2.6 2-Butanone 25
3.2.7 Ethyl Acetate 26

3.3 Liquid Mixtures 26

4. Ultrasonic Velocity Models 32
4.1 Introduction 32
4.2 Theory of Sound Propagation 32
   4.2.1 Rao’s specific velocity method 33
   4.2.2 Nomoto’s Theory 37
   4.2.3 Impedance Dependence Relation 38
   4.2.4 Van Dael – Vangeel Theory 38
   4.2.5 Collision Factor Theory (CFT) 39
   4.2.6 Nutsch Kuhnies Theory 40
4.3 Results and Discussion 41

5. Thermodynamical Parameters 48
5.1 Excess Parameters 48
5.2 Internal Pressure and Free Volume 49
5.3 Theory of Ultrasonic Absorption 56
   5.3.1 Classical Absorption 56
   5.3.2 Relaxation Time and Gibb’s Free Energy of Activation 57
   5.3.3 Other Parameters 59
5.4 Results and Discussion 60
   5.4.1 Binary Mixtures 60
   5.4.2 Conclusion : Binary Mixtures 167
   5.4.3 Ternary Mixtures 168
   5.4.4 Conclusion : Ternary Mixtures 212

6. Nonlinear Ultrasonics 213
6.1 Introduction 213
6.2 Equation of State and Internal Pressure 214
6.3 Nonlinear Propagation of Ultrasonic Waves in Fluids 218
  6.3.1 Estimation of Effective Van der Waals constants of liquids 220
  6.3.2 Molecular Dynamics: Estimation of Self-diffusion Coefficient and Transitional Correlation Times 221
  6.3.3 Gruneisen Parameter and other Nonlinear Parameters 222
  6.3.4 Theoretical Relation for Beyer’s Nonlinearity Parameter 227

6.4 Results and Discussion 228
  6.4.1 Nonlinear Parameters of Pure Liquids 228
  6.4.2 Effective Van der Waals Constants of Liquids 230
  6.4.3 Nonlinear Ultrasonics Applied to Liquid Mixtures 234
  6.4.4 Conclusion 260

7. FTIR – Spectroscopic Studies 261
  7.1 Introduction 261
  7.2 Theory 262
  7.3 Practical IR Spectroscopy 263
  7.4 Sample Preparation 264
  7.5 Comparison with a reference 265
  7.6 FTIR Spectroscopy 267
  7.7 Analyse of the spectra 267
  7.8 Advantages of FTIR 274
  7.9 Applications 274
  7.10 Results and Discussion 275

8. Conclusion 319
  8.1 Theoretical Models 319
  8.2 Thermodynamical Parameters 319
  8.3 Nonlinear Ultrasonics 319
  8.4 FTIR Spectroscopic studies 320

9. Scope for Future Studies 321

Bibliography B1
Publications and Award