Contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 Introduction to solid electrolytes 1

1.2 Classification of various solid electrolytes 3

1.2.1 Classification depending on type of ion conducting species 3

1.2.2 Classification depending on type of host material 7

1.3 Glass as a solid electrolyte 14

1.4 α-AgI as a model solid electrolyte 16

1.5 α-AgI based solid electrolytes 20

1.6 Glass as an effective medium to stabilize α-AgI at room temperature 21

1.7 A Review of AgI based silver ion conducting glass materials 27

1.8 Applications of ion conducting glasses 34

1.9 Motivation 34

1.10 Present work 36

References

Chapter 2 Theoretical details

2.1 Introduction 49

2.2 General features of superionic conduction in glasses 49

2.2.1 Cation and anion conducting glasses 49

2.2.2 Effect of temperature on ionic conductivity 50

2.2.3 The AC conductivity spectrum 51

2.2.4 Near constant loss effects 52

2.3 Theoretical models of superionic conduction in glasses 53

2.3.1 Basic theory of conductivity 53

2.3.2 The Anderson-Stuart model 54

2.3.3 The weak electrolyte model 56
2.3.4 Cluster bypass model 57
2.3.5 Random site model 58
2.3.6 The diffusion pathway model 59
2.3.7 Jump and relaxation pathways 60
2.3.8 The concept of mismatch and relaxation 60
2.4 Impedance spectroscopy and its various formalisms 62
2.4.1 Mathematical Foundations of Impedance Spectroscopy 63
2.4.2 Complex impedance formalism 66
2.4.3 Complex Conductivity Formalism 69
2.4.4 Complex Dielectric Formalism 71
2.4.5 Complex Modulus Formalism 74
2.4.6 Electrical relaxations and the Decoupling index 78

References

Chapter 3 Experimental Details 85-101
3.1 Introduction 85
3.2 Preparation of glass samples 85
3.3 Experimental techniques 86
3.3.1 Density measurements 87
3.3.2 Powder x-ray diffraction 87
3.3.3 Differential scanning calorimetry 89
3.3.4 Fourier transform – infrared spectroscopy 93
3.3.5 Impedance spectroscopy 95
3.3.6 Ionic transport number measurement 95
3.3.7 Solid state battery preparation 98

References

Chapter 4 Characterization Results 103-130
4.1 Density And Molar Volume 103
4.2 X-ray Diffraction studies. 105
4.3 Differential Scanning Calorimetry Studies 108
4.4 Fourier Transform infrared Spectroscopy analysis 116
4.5 Ionic transport number 126

References
Chapter 5 Transport Properties

- **5.1** Introduction
 - Page: 133
- **5.2** Complex impedance analysis
 - Page: 136
- **5.3** DC conductivity
 - Page: 146
- **5.4** Frequency dependent conductivity
 - Page: 158
- **5.5** Frequency dependent dielectric permittivity
 - Page: 181
- **5.6** Modulus function analysis
 - Page: 201

References

Chapter 6 Battery Applications & Results

- **6.1** Introduction
 - Page: 229
- **6.2** Experimental
 - Page: 234
 - **6.2.1** Cell Fabrication
 - Page: 234
 - **6.2.2** Cell characterization and other studies
 - Page: 237
- **6.3** Result and discussion
 - Page: 238
 - **6.3.1** Open circuit voltage of cell
 - Page: 238
 - **6.3.2** Polarization studies
 - Page: 238
 - **6.3.3** Discharge studies
 - Page: 244
- **6.4** Conclusion
 - Page: 248

References

Chapter 7 Conclusion & Future Prospects of the Work

- **List of Publications**
 - Page: 253