<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Tunnel Type Sediment Ejector used on Salampur Feeder in Punjab, India (Sujudi, 1988)</td>
<td>106</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Vortex Tube Type Ejector used at Courtland Diversion Dam, Kansas, U.S.A. (Sujudi, 1988)</td>
<td>106</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Vortex Type Sediment Extractor (Cecen, 1977)</td>
<td>107</td>
</tr>
<tr>
<td>Fig. 1.4</td>
<td>Distribution of Tangential Velocity (Julian, 1985)</td>
<td>108</td>
</tr>
<tr>
<td>Fig. 1.5</td>
<td>Particle Trajectory in Vortex Settling Basin (Mashauri, 1986)</td>
<td>108</td>
</tr>
<tr>
<td>Fig. 2.1(a)</td>
<td>Tangential Velocities at Different Horizontal Levels (Anwar, 1965)</td>
<td>109</td>
</tr>
<tr>
<td>Fig. 2.1(b)</td>
<td>Comparison between Calculated and Measured Tangential Velocities far from Core (Anwar, 1965)</td>
<td>109</td>
</tr>
<tr>
<td>Fig. 2.1(c)</td>
<td>Comparison between Calculated and Measured Tangential Velocities Near the Air-Core (Anwar, 1965)</td>
<td>110</td>
</tr>
<tr>
<td>Fig. 2.1(d)</td>
<td>Radial Velocity Distribution at Pipe Entrance Level (Anwar, 1965)</td>
<td>110</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Distribution of Tangential Velocity (Anwar, 1969)</td>
<td>111</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Tangential Velocity Distribution as Observed by Cecen (1977)</td>
<td>112</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>Variation of Tangential Velocity within Vortex Basin (Mashauri, 1986)</td>
<td>113</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Computed Variation in Velocity Components as a Function of Radial Position in the Vortex Basin (Mashauri, 1986)</td>
<td>113</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>Variation of Tangential Velocity with Radius (Vatistas, 1989)</td>
<td>114</td>
</tr>
<tr>
<td>Fig. 2.7(a)</td>
<td>Variation of Tangential Velocity v_θ (Hite, 1991 and Mih, 1990)</td>
<td>114</td>
</tr>
<tr>
<td>Fig. 2.7(b)</td>
<td>Variation of Radial Velocity v_r (Hite, 1991 and Mih, 1990)</td>
<td>115</td>
</tr>
<tr>
<td>Fig. 2.7(c)</td>
<td>Variation of Axial (Vertical) Velocity (Hite, 1991 and Mih, 1990)</td>
<td>115</td>
</tr>
<tr>
<td>Fig. 2.8(a)</td>
<td>Variation of Tangential Velocity along Chamber</td>
<td>xix</td>
</tr>
</tbody>
</table>
Diameter (Athar et al., 2000, 2002) 116

Fig. 2.8(b) Variation of Radial Velocity along Chamber Diameter
(Athar et al., 2000, 2002) 117

Fig. 2.9 Schematic Layout of Word Type Tornado Vortex
Chamber (David, 2002) 118

Fig. 2.10(a) Circular Chamber and Tangential inlet (Walton et al., 1939) 119
Fig. 2.10(b) Circular Chamber and Vertically Upward inlet (Walton et al., 1939) 119

Fig. 2.11 General View of a Grit Separator (Sullivan, 1974) 120
Fig. 2.12 White Ladies Road – Vortex Chamber Sediment
Extractor (Smission, 1967) 121

Fig. 2.13 Schematic of Under-Current Flow in Swirl
Concentrator (Sullivan, 1972) 122

Fig. 2.14 Vortex Type Separator (Curi, et al., 1975) 123
Fig. 2.15 Circulation Chamber Studied by Salakhov (1975) 123
Fig. 2.16 Perspective View of a Hydrocyclone (Svarovsky, 1981) 124
Fig. 2.17 Model Tank (Ogihara and Sakaguchi, 1984) 125
Fig. 2.18 Geometric Configuration of Vortex Basin Model Used
by Mashauri (1986) 125

Fig. 2.19 Vortex Settling Basin Model – 1 (Paul et al., 1988 a) 126
Fig. 2.20 Vortex Chamber Sediment Separator (Esen, 1989) 126
Fig. 2.21 Different Types of Geometric Configurations of the
Vortex Chamber Type Sediment Extractor (Athar et al.,
2000, 2002) 127

Fig. 2.22 Lay Out of the Vortex Overflow With Peripheral Spill
(Gert and Jean, 2004) 128
Fig. 2.23 Neural Network Algorithm 129
Fig. 2.24 Single Neural Network Structure (Birikundavyi et al., 2002) 129
Fig. 3.1 Computational Grid in $r-\theta-z$ Co-ordinate System 130
Fig. 3.2 Structure Of Coefficient Matrix 131
Fig. 4.1(a) Plan View of the Experimental Set-up 132
Fig. 4.1(b) Longitudinal Section of the Experimental Set-up 132
Fig. 4.2 Calibration Curve for Bend Meter (Main Supply Line) 133
Fig. 4.3(a)	Photographic View of the Experimental - Set-	134
Fig. 4.3(b)	Photographic View of the Vortex Settling Basin	135
Fig. 4.3(c)	Photographic View of the Vortex Flow Inside the Vortex Settling Basin	136
Fig. 4.4	Photographic View of the 3-D PEMS Liquid Velocity Meter	137
Fig. 4.5	Diagram Showing Voltage Components Versus Velocity Vectors	138
Fig. 4.6	Photographic View of the 3-D Assembly of Two Sensor Probes of PEMS Liquid Velocity Meter	139
Fig. 4.7	Photographic View of Sediment Feeder	139
Fig. 4.8	Photographic View of the Centrifugal Pump Assembly used for Sampling of Sediment	140
Fig. 4.9	Calibration Curve for Orifice Meter (Centrifugal Pump Assembly)	141
Fig. 4.10	Photographic View of the Sediment Trap	142
Fig. 4.11	Sectorisation of Vortex Basin	143
Fig. 5.1	Sectorisation of Vortex Basin	143
Fig. 5.2	Variation of Tangential Velocity along Basin Diameter 1 - 5	144
Fig. 5.3	Variation of Tangential Velocity along Basin Diameter 2 - 6	145
Fig. 5.4	Variation of Tangential Velocity along Basin Diameter 3 - 7	146
Fig. 5.5	Variation of Tangential Velocity along Basin Diameter 4 - 8	147
Fig. 5.6	Variation of Radial Velocity along Basin Diameter 1 - 5	148
Fig. 5.7	Variation of Radial Velocity along Basin Diameter 2 - 6	149
Fig. 5.8	Variation of Radial Velocity along Basin diameter 3 - 7	150
Fig. 5.9	Variation of Radial Velocity along Basin diameter 4 - 8	151
Fig. 5.10	Variation of Vertical Velocity along Basin Diameter 1 - 5	152
Fig. 5.11	Variation of Vertical Velocity along Basin Diameter 2 - 6	153
Fig. 5.12	Variation of Vertical Velocity along Basin Diameter 3 - 7	154
Fig. 5.13	Variation of Vertical Velocity along Basin Diameter 4 - 8	155
Fig. 5.14	Variation of Velocity Components along Basin Depth	156
Fig. 5.15	Variation of Velocity Components along Basin Depth	156
Fig. 5.16	Variation of Velocity Components along Basin Depth	157
Fig. 5.17	Variation of Velocity Components along Basin Depth	157
Fig. 5.18 Variation of Velocity Components along Basin Depth
Fig. 5.19 Variation of Velocity Components along Basin Depth
Fig. 5.20 Variation of Velocity Components along Basin Depth
Fig. 5.21 Variation of Velocity Components along Basin Depth
Fig. 5.22 Variation of Velocity Components along Basin Depth
Fig. 5.23 Variation of Velocity Components along Basin Depth
Fig. 5.24 Variation of Velocity Components along Basin Depth
Fig. 5.25 Variation of Velocity Components along Basin Depth
Fig. 5.26 Variation of Velocity Components along Basin Depth
Fig. 5.27 Variation of Velocity Components along Basin Depth
Fig. 5.28 Variation of Velocity Components along Basin Depth
Fig. 5.29 Variation of Velocity Components along Radial Direction
Fig. 5.30 Variation of Velocity Components along Radial Direction
Fig. 5.31 Variation of Velocity Components along Radial Direction
Fig. 5.32 Variation of Velocity Components along Radial Direction
Fig. 5.33 Variation of Velocity Components along Radial Direction
Fig. 5.34 Variation of Velocity Components along Radial Direction
Fig. 5.35 Variation of Velocity Components along Radial Direction
Fig. 5.36 Variation of Velocity Components along Radial Direction
Fig. 5.37 Variation of Velocity Components along Radial Direction
Fig. 5.38 Variation of Velocity Components along Radial Direction
Fig. 5.39 Variation of Velocity Components along Radial Direction
Fig. 5.40 Variation of Velocity Components along Radial Direction
Fig. 5.41 Variation of Velocity Components along Angular Direction
Fig. 5.42 Variation of Velocity Components along Angular Direction
Fig. 5.43 Variation of Velocity Components along Angular Direction
Fig. 5.44 Variation of Velocity Components along Angular Direction
Fig. 5.45 Variation of Velocity Components along Angular Direction
Fig. 5.46 Variation of Velocity Components along Angular Direction
Fig. 5.47 Variation of Velocity Components along Angular Direction
Fig. 5.48 Variation of Velocity Components along Angular Direction
Fig. 5.49 Variation of Velocity Components along Angular Direction
Fig. 5.50 Segments of Vortex Settling Basin having Similar
Fig. 5.51 Segments of Vortex Settling Basin having Similar Radial Velocity Distributions

Fig. 5.52 Segments of Vortex Settling Basin having Similar Vertical Velocity Distributions

Fig. 5.53 Variation of Sediment Concentration along Vertical Direction for $\theta = 0^\circ$

Fig. 5.54 Variation of Sediment Concentration along Vertical Direction for $\theta = 45^\circ$

Fig. 5.55 Variation of Sediment Concentration along Vertical Direction for $\theta = 90^\circ$

Fig. 5.56 Variation of Sediment Concentration along Vertical Direction for $\theta = 135^\circ$

Fig. 5.57 Variation of Sediment Concentration along Vertical Direction for $\theta = 180^\circ$

Fig. 5.58 Variation of Sediment Concentration along Vertical Direction for $\theta = 225^\circ$

Fig. 5.59 Variation of Sediment Concentration along Vertical Direction for $\theta = 270^\circ$

Fig. 5.60 Variation of Sediment Concentration along Vertical Direction for $\theta = 315^\circ$

Fig. 5.61 Variation of Sediment Concentration along Basin Diameter 1 - 5

Fig. 5.62 Variation of Sediment Concentration along Basin Diameter 2 - 6

Fig. 5.63 Variation of Sediment Concentration along Basin Diameter 3 - 7

Fig. 5.64 Variation Of Sediment Concentration Along Basin Diameter 4 - 8

Fig. 5.65 Comparison between Computed and Observed Values of Concentration

Fig. 5.66 Variation of Removal Efficiency η_o with Diameter Ratio

Fig. 5.67 Variation of Removal Efficiency η_o with Diameter
Ratio for $d_{50} = 0.355$ mm

Fig. 5.68 Variation of Removal Efficiency η_0 with Diameter Ratio for $Q_u/Q_i = 10\%$

Fig. 5.69 Variation of Removal Efficiency η_0 with Diameter Ratio $Q_u/Q_i = 5 - 20\%$

Fig. 5.70 Variation of Removal Efficiency η_0 with Diameter Ratio for $Q_u/Q_i = 10\%$

Fig. 5.71 Variation of Removal Efficiency η_0 with Width Ratio for $Q_u/Q_i = 10\%$

Fig. 5.72 Variation of Removal Efficiency η_0 with Width Ratio for $Q_u/Q_i = 15\%$

Fig. 5.73 Variation of Removal Efficiency η_0 with Width Ratio for $d_{50} = 0.106$ mm

Fig. 5.74 Variation of Removal Efficiency η_0 with Width Ratio for $d_{50} = 0.355$ mm

Fig. 5.75 Variation of Removal Efficiency η_0 with Width Ratio for $d_{50} = 0.106$ mm

Fig. 5.76 Variation of Removal Efficiency η_0 with Width Ratio for $d_{50} = 0.355$ mm

Fig. 5.77 Variation of Removal Efficiency η_0 with Particle Reynolds Number $\omega_0 d_{50}/\nu$

Fig. 5.78 Variation of Removal Efficiency η_0 with Particle Reynolds Number $\omega_0 d_{50}/\nu$

Fig. 5.79 Variation of Removal Efficiency η_0 with Particle Reynolds Number $\omega_0 d_{50}/\nu$

Fig. 5.80 Variation of η_1 with Water Abstraction Ratio Q_u/Q_i

Fig. 5.81 Variation of η_1 with Water Abstraction Ratio Q_u/Q_i

Fig. 5.82 Variation of η_1 with Water Abstraction Ratio Q_u/Q_i

Fig. 5.83 Variation of η_1 with Water Abstraction Ratio Q_u/Q_i

Fig. 5.84 Variation of η_2 with Depth Ratio Z_b/h_p

Fig. 5.85 Variation of η_2 with Depth Ratio Z_b/h_p

Fig. 5.86 Variation of η_2 with Depth Ratio Z_b/h_p

Fig. 5.87 Variation of η_3 with Diameter Ratio D_T/d_u

Fig. 5.88 Variation of η_3 with Diameter Ratio D_T/d_u

Fig. 5.89 Variation of η_4 with Width Ratio D_T/B
Fig. 5.90 Comparison between Computed and Observed Values of η_0
Fig. 5.91 Variation of Performance Parameters with Number of Hidden Nodes by FFBP for Model - M1
Fig. 5.92 Variation of Performance Parameters with Number of Hidden Nodes by CFBP for Model - M1
Fig. 5.93 Variation of Performance Parameters with Number of Hidden Nodes by RBF for Model - M1
Fig. 5.94 Variation of Performance Parameters with Number of Hidden Nodes by FFBP For Model - M2
Fig. 5.95 Variation of Performance Parameters with Number of Hidden Nodes by CFBP for Model - M2
Fig. 5.96 Variation of Performance Parameters with Number of Hidden Nodes by RBF for Model - M2
Fig. 5.97 Model - M1 Use of Raw Variables
Fig. 5.98 Model - M2 Use of Grouped Variables
Fig. 5.99 Epochs Versus Squared Error of Raw Variables by Cascade Forward Back Propagation
Fig. 5.100 Epochs Versus Squared Error of Grouped Variables by Cascade Forward Back Propagation
Fig. 5.101 Histogram of Percentage Error for Model - M1 by Cascade Forward Back Propagation
Fig. 5.102 Histogram of Percentage Error for Model - M2 by Cascade Forward Back Propagation
Fig. 5.103 Comparison between Observed and Computed values of η_0 by FFBP for Model - M1
Fig. 5.104 Comparison between Observed and Computed values of η_0 by CFBP for Model - M1
Fig. 5.105 Comparison between Observed and Computed values of η_0 by RBF for Model - M1
Fig. 5.106 Comparison between Observed and Computed values of η_0 by FFBP For Model - M2
Fig. 5.107 Comparison between Observed and Computed values of η_0 by CFBP for Model - M2
Fig. 5.108 Comparison between Observed and Computed values of η_0 by RBF for Model - M2