LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1</td>
<td>Effect of Lime and Aging on Strength of Fly ash (Singh 1996)</td>
<td>62</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Fly ash Generation and Utilization (TIFAC 2005)</td>
<td>62</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Comparison of Load-Settlement Values of Compacted ash with Dense Sand (Leonards and Bailey 1982)</td>
<td>63</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>Results of Plate Load Tests on Compacted ash Fill (Dayal and Sinha 2000)</td>
<td>63</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Results of Plate Loads Tests on Pond ash (Ghosh and Bhatnagar 1998)</td>
<td>64</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>A Typical Cross Section of Pavement without Fly ash (Basak et al. 2004)</td>
<td>64</td>
</tr>
<tr>
<td>Fig. 2.7</td>
<td>A Typical Cross Section of Pavement with Fly ash (Basak et al. 2004)</td>
<td>65</td>
</tr>
<tr>
<td>Fig. 2.8</td>
<td>Some Loading Scenarios that Influence Leachability of Recycled Waste Material (Ogunro et al. 2006)</td>
<td>65</td>
</tr>
<tr>
<td>Fig. 2.9</td>
<td>Unconfined Compressive Strength Development after Different Curing Periods. (Malviya and Chaudhary 2004)</td>
<td>66</td>
</tr>
<tr>
<td>Fig. 2.10</td>
<td>Poisoning of Hydration Due to Waste Addition (Hills and Pollard 1997)</td>
<td>66</td>
</tr>
<tr>
<td>Fig. 2.11</td>
<td>Generalized Mechanism of Hydration Poisoning (Hills 1993)</td>
<td>67</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Grain Size Distribution Curve of Harduaganj Fly ash</td>
<td>98</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>Scanning Electron Micrograph of Fly ash</td>
<td>98</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>Scanning Electron Micrograph of Lime Precipitated Electroplating Waste Sludge</td>
<td>98</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>XRD Pattern of Fly ash</td>
<td>99</td>
</tr>
</tbody>
</table>
Fig. 3.5 Mixed Electroplating Waste Sludge before Treatment and Precipitation (Collected from Source) 99
Fig. 3.6 Dried Electroplating Waste Sludge after Treatment and Precipitation 100
Fig. 3.7 Dried and Pulverized Electroplating Waste Sludge after Treatment and Precipitation 100
Fig. 3.8 Curing of Cubes in a Thermostatically Temperature Controlled Curing Tank 101
Fig. 3.9 Thermostatically Temperature Controlled Curing Tank used for Curing of Cubes 101
Fig. 3.10 Cube Strength Test in Progress 102
Fig. 3.11 Compressive Strengths of Mortar at Different Water to Binder Ratios for 20% Fly ash in Cement (Weng and Huang 1994) 102
Fig. 3.12 Compressive Strengths of Mortar as Function of Percent Fly ash in Cement (Weng and Huang 1994) 103
Fig. 3.13 Compressive Strength as a Function of Waste/Binder Ratio for Cement-Fly ash Stabilized Blocks on the 28th days of Curing (Sophia and Swaminathan 2005) 103
Fig. 3.14 Effect of Waste Sludge and Curing on Compressive Strength of Fly ash 104
Fig. 3.15 Effect of Cement and Curing on Compressive Strength of Fly ash 104
Fig. 3.16 Effect of Cement and Curing on Compressive Strength of 93%-75%FA+05%S Mix 105
Fig. 3.17 Effect of Cement and Curing on Compressive Strength of 68%-50%FA+30%S Mix 105
Fig. 3.18 Effect of Cement and Curing on Compressive Strength of 63%-45%FA+35%S Mix 106
Fig. 3.19 Effect of Cement and Curing on Compressive Strength of 58%-40%FA+40%S Mix 106
Fig. 3.20 Effect of Cement and Curing on Compressive Strength of 53%-35%FA+45%S Mix 107
Fig. 3.21 Effect of Cement and Curing on Compressive Strength of 48%-30%FA+50%S Mix 107
Fig. 3.22 Effect of Cement and Curing on Compressive Strength of 43%-25%FA+55%S Mix

Fig. 3.23 Effect of Cement and Curing on Compressive Strength of 38%-20%FA+60%S Mix

Fig. 3.24 Effect of Curing on Compressive Strength of Fly ash-Cement-Waste Sludge Mix

Fig. 3.25 Scanning Electron Micrograph of 80%FA+20%S

Fig. 3.26 Scanning Electron Micrograph of 70%FA+30%S

Fig. 3.27 Scanning Electron Micrograph of 65%FA+35%S

Fig. 3.28 Scanning Electron Micrograph of 60%FA+40%S

Fig. 3.29 Scanning Electron Micrograph of 92%FA+8%C

Fig. 3.30 Scanning Electron Micrograph of 87%FA+8%C+5%S

Fig. 3.31 Scanning Electron Micrograph of 72%FA+8%C+20%S

Fig. 3.32 Scanning Electron Micrograph of 62%FA+8%C+30%S

Fig. 3.33 Scanning Electron Micrograph of 57%FA+8%C+35%S

Fig. 3.34 Scanning Electron Micrograph of 52%FA+8%C+40%S

Fig. 3.35 Scanning Electron Micrograph of 47%FA+8%C+45%S

Fig. 3.36 Scanning Electron Micrograph of 42%FA+8%C+50%S

Fig. 3.37 Scanning Electron Micrograph of 37%FA+8%C+55%S

Fig. 3.38 Scanning Electron Micrograph of 32%FA+8%C+60%S

Fig. 3.39 XRD Pattern of Fly ash-Cement-Waste Sludge Mix at 28 days of Curing

Fig. 3.40 Leaching of Heavy Metals from 52%FA+8%C+40%S Mix after 28 days of Curing

Fig. 4.1 MDD and OMC Relationship of Harduaganj Fly ash and Pond ash

Fig. 4.2 Effect of Fresh/Remolded Samples on Compaction Properties of Fly ash (Leonards and Bailey 1982)
Fig. 4.3 Effect of using Fresh and Remolded Samples—Standard Proctor Test on Fly ash (Ramasamy and Pusadkar 2004) –Preconditioning Period = 0 hr

Fig. 4.4 Effect of using Fresh and Remolded Samples—Modified Proctor Test on Fly ash (Ramasamy and Pusadkar 2004) –Preconditioning Period = 0 hr

Fig. 4.5 Effect of Preconditioning Period on Compaction Properties of Neyveli Fly ash (Sivapullaiah et al. 1998)

Fig. 4.6 Effect of Preconditioning Period—Standard Proctor Test on Fly ash (Ramasamy and Pusadkar 2004)

Fig. 4.7 Effect of Preconditioning Period—Modified Proctor Test on Fly ash (Ramasamy and Pusadkar 2004)

Fig. 4.8 Effect of Compaction Energy on Compaction Properties of Fly ash (Ramasamy and Pusadkar 2004)—Preconditioning Period =0 hr

Fig. 4.9 Effect of Compaction Energy on Compaction Properties of Fly ash (Fresh—Preconditioning Period = 0 hr)

Fig. 4.10 Effect of Compaction Energy on Compaction Properties of Fly ash (Remolded-Preconditioning Period = 0 hr)

Fig. 4.11 Effect of Compaction Energy on Compaction Properties of 55%FA+45%S (Fresh-Preconditioning Period = 0 hr)

Fig. 4.12 Effect of Compaction Energy on Compaction Properties of 55%FA+45%S (Remolded-Preconditioning Period = 0 hr)

Fig. 4.13 Effect of Waste Sludge on Compaction Properties of Fresh Fly ash (Standard Proctor Test-Preconditioning Period = 0 hr)

Fig. 4.14 Effect of Waste Sludge on Compaction Properties of Fresh Fly ash (Modified Proctor Test-Preconditioning Period = 0 hr)

Fig. 4.15 Effect of Waste Sludge on Compaction Properties of Fresh Fly ash (Standard Proctor Test-Preconditioning Period = 1 hr)

Fig. 4.16 Effect of Waste Sludge on Compaction Properties of Fresh Fly ash (Modified Proctor Test-Preconditioning Period = 1 hr)

Fig. 4.17 Effect of Waste Sludge on Compaction Properties of Fresh Fly ash (Standard Proctor Test-Preconditioning Period = 16 hr)

Fig. 4.18 Effect of Waste Sludge on Compaction Properties of Fresh Fly ash (Modified Proctor Test-Preconditioning Period = 16 hr)
Fig. 4.19 Effect of Waste Sludge on Compaction Properties of Fresh Fly ash (Standard Proctor Test-Preconditioning Period = 24 hr)

Fig. 4.20 Effect of Waste Sludge on Compaction Properties of Fresh Fly ash (Modified Proctor Test-Preconditioning Period = 24 hr)

Fig. 4.21 Effect of Waste Sludge on Compaction Properties of Remolded Fly ash (Standard Proctor Test-Preconditioning Period = 0 hr)

Fig. 4.22 Effect of Waste Sludge on Compaction Properties of Remolded Fly ash (Modified Proctor Test-Preconditioning Period = 0 hr)

Fig. 4.23 Effect of Waste Sludge on Compaction Properties of Remolded Fly ash (Standard Proctor Test-Preconditioning Period = 1 hr)

Fig. 4.24 Effect of Waste Sludge on Compaction Properties of Remolded Fly ash (Modified Proctor Test-Preconditioning Period = 1 hr)

Fig. 4.25 Effect of Waste Sludge on Compaction Properties of Remolded Fly ash (Standard Proctor Test-Preconditioning Period = 16 hr)

Fig. 4.26 Effect of Waste Sludge on Compaction Properties of Remolded Fly ash (Modified Proctor Test-Preconditioning Period = 16 hr)

Fig. 4.27 Effect of Waste Sludge on Compaction Properties of Remolded Fly ash (Standard Proctor Test-Preconditioning Period = 24 hr)

Fig. 4.28 Effect of Waste Sludge on Compaction Properties of Remolded Fly ash (Modified Proctor Test-Preconditioning Period = 24 hr)

Fig. 4.29 Effect of Preconditioning Period on MDD of Fly ash and Fly ash Waste Sludge Blend for Fresh Sample (Standard Proctor Test)

Fig. 4.30 Effect of Preconditioning Period on MDD of Fly ash and Fly ash-Waste Sludge Blend for Fresh Sample (Modified Proctor Test)
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4.31</td>
<td>Effect of Waste Sludge on MDD of Fly ash for Fresh Sample (Standard Proctor Test-Preconditioning Period = 0 hr)</td>
</tr>
<tr>
<td>Fig. 4.32</td>
<td>Effect of Waste Sludge on MDD of Fly ash for Fresh Sample (Modified Proctor Test-Preconditioning Period = 0 hr)</td>
</tr>
<tr>
<td>Fig. 4.33</td>
<td>Observed Versus Computed MDD Values</td>
</tr>
<tr>
<td>Fig. 5.1</td>
<td>Accessories of Triaxial Compression Test</td>
</tr>
<tr>
<td>Fig. 5.2</td>
<td>Specimen Enclosed in the Triaxial Cell before Testing</td>
</tr>
<tr>
<td>Fig. 5.3</td>
<td>Curing of the Triaxial Specimens in a Thermostatically Temperature Controlled Curing Tank</td>
</tr>
<tr>
<td>Fig. 5.4</td>
<td>Unconsolidated Undrained (UU) Triaxial Compression Test in Progress</td>
</tr>
<tr>
<td>Fig. 5.5</td>
<td>Specimen after Failure</td>
</tr>
<tr>
<td>Fig. 5.6</td>
<td>Surface Cracks Appeared due to Addition of Waste Sludge Beyond 50% in the Mix</td>
</tr>
<tr>
<td>Fig. 5.7</td>
<td>Idealized Behaviour of Cemented Sandy Soil (a) Stress-Strain Curves (b) Effective Stress Path (Coop and Atkinson 1993)</td>
</tr>
<tr>
<td>Fig. 5.8</td>
<td>Stress-Strain Behaviour of Fly ash at 7 days of Curing</td>
</tr>
<tr>
<td>Fig. 5.9</td>
<td>Stress-Strain Behaviour of Fly ash at 28 days of Curing</td>
</tr>
<tr>
<td>Fig. 5.10</td>
<td>Stress-Strain Behaviour of Fly ash at 90 days of Curing</td>
</tr>
<tr>
<td>Fig. 5.11</td>
<td>Modified Failure Envelopes of Fly ash</td>
</tr>
<tr>
<td>Fig. 5.12</td>
<td>Stress-Strain Behaviour of 70%FA+30%S at 7 days of Curing</td>
</tr>
<tr>
<td>Fig. 5.13</td>
<td>Stress-Strain Behaviour of 70%FA+30%S at 28 days of Curing</td>
</tr>
<tr>
<td>Fig. 5.14</td>
<td>Modified Failure Envelopes of 70%FA+30%S</td>
</tr>
<tr>
<td>Fig. 5.15</td>
<td>Stress-Strain Behaviour of 65%FA+35%S at 7 days of Curing</td>
</tr>
<tr>
<td>Fig. 5.16</td>
<td>Stress-Strain Behaviour of 65%FA+35%S at 28 days of Curing</td>
</tr>
<tr>
<td>Fig. 5.17</td>
<td>Modified Failure Envelopes of 65%FA+35%S</td>
</tr>
</tbody>
</table>
Fig. 5.18 Stress-Strain Behaviour of 60%FA+40%S at 7 days of Curing

Fig. 5.19 Stress-Strain Behaviour of 60%FA+40%S at 28 days of Curing

Fig. 5.20 Modified Failure Envelopes of 60%FA+40%S

Fig. 5.21 Stress-Strain Behaviour of 55%FA+45%S at 7 days of Curing

Fig. 5.22 Stress-Strain Behaviour of 55%FA+45%S at 28 days of Curing

Fig. 5.23 Modified Failure Envelopes of 55%FA+45%S

Fig. 5.24 Stress-Strain Behaviour of 50%FA+50%S at 7 days of Curing

Fig. 5.25 Stress-Strain Behaviour of 50%FA+50%S at 28 days of Curing

Fig. 5.26 Modified Failure Envelopes of 50%FA+50%S

Fig. 5.27 Stress-Strain Behaviour of 92%FA+8%C at 7 days of Curing

Fig. 5.28 Stress-Strain Behaviour of 92%FA+8%C at 28 days of Curing

Fig. 5.29 Stress-Strain Behaviour of 92%FA+8%C at 90 days of Curing

Fig. 5.30 Modified Failure Envelopes of 92%FA+8%C

Fig. 5.31 Stress-Strain Behaviour of 62%FA+30%S+8%C at 7 days of Curing

Fig. 5.32 Stress-Strain Behaviour of 62%FA+30%S+8%C at 28 days of Curing

Fig. 5.33 Stress-Strain Behaviour of 62%FA+30%S+8%C at 90 days of Curing

Fig. 5.34 Modified Failure Envelopes of 62%FA+30%S+8%C

Fig. 5.35 Stress-Strain Behaviour of 57%FA+35%S+8%C at 7 days of Curing
Fig. 5.36 Stress-Strain Behaviour of 57%FA+35%S+8%C at 28 days of Curing 187
Fig. 5.37 Stress-Strain Behaviour of 57%FA+35%S+8%C at 90 days of Curing 188
Fig. 5.38 Modified Failure Envelopes of 57%FA+35%S+8%C 188
Fig. 5.39 Stress-Strain Behaviour of 52%FA+40%S+8%C at 7 days of Curing 189
Fig. 5.40 Stress-Strain Behaviour of 52%FA+40%S+8%C at 28 days of Curing 189
Fig. 5.41 Stress-Strain Behaviour of 52%FA+40%S+8%C at 90 days of Curing 190
Fig. 5.42 Modified Failure Envelopes of 52%FA+40%S+8%C 190
Fig. 5.43 Stress-Strain Behaviour of 47%FA+45%S+8%C at 7 days of Curing 191
Fig. 5.44 Stress-Strain Behaviour of 47%FA+45%S+8%C at 28 days of Curing 191
Fig. 5.45 Stress-Strain Behaviour of 47%FA+45%S+8%C at 90 days of Curing 192
Fig. 5.46 Modified Failure Envelopes of 47%FA+45%S+8%C 192
Fig. 5.47 Stress-Strain Behaviour of 42%FA+50%S+8%C at 7 days of Curing 193
Fig. 5.48 Stress-Strain Behaviour of 42%FA+50%S+8%C at 28 days of Curing 193
Fig. 5.49 Stress-Strain Behaviour of 42%FA+50%S+8%C at 90 days of Curing 194
Fig. 5.50 Modified Failure Envelopes of 42%FA+50%S+8%C 194
Fig. 5.51 Variation in Cohesion of Fly ash and Waste Sludge Blend with Curing 195
Fig. 5.52 Variation in Angle of Internal Friction of Fly ash and Waste Sludge Blend with Curing 195
Fig. 5.53 Variation in Cohesion of Fly ash-Waste Sludge-Cement Mix with Curing 196
Fig. 5.54 Variation in Angle of Internal Friction of Fly ash-Waste Sludge-Cement Mix with Curing

Fig. 5.55 Combined Effect of Curing, Waste Sludge and Cement on Shear Strength of Mix

Fig. 5.56 Prepared CBR Mould with Annular Weight and Compaction Rammer

Fig. 5.57 Curing of CBR Sample in Progress

Fig. 5.58 CBR Test in Progress

Fig. 5.59 Load Penetration Curves for Fly ash

Fig. 5.60 Load Penetration Curves for 92%FA+8%C

Fig. 5.61 Load Penetration Curves for 70%FA+30%S Mix

Fig. 5.62 Load Penetration Curves for 65%FA+35%S Mix

Fig. 5.63 Load Penetration Curves for 60%FA+40%S Mix

Fig. 5.64 Load Penetration Curves for 55%FA+45%S Mix

Fig. 5.65 Load Penetration Curves for 50%FA+50%S Mix

Fig. 5.66 Load Penetration Curves for 45%FA+55%S Mix

Fig. 5.67 Load Penetration Curves for 62%FA+30%S+8%C Mix

Fig. 5.68 Load Penetration Curves for 57%FA+35%S+8%C Mix

Fig. 5.69 Load Penetration Curves for 52%FA+40%S+8%C Mix

Fig. 5.70 Load Penetration Curves for 47%FA+45%S+8%C Mix

Fig. 5.71 Load Penetration Curves for 42%FA+50%S+8%C Mix

Fig. 5.72 Load Penetration Curves for 37%FA+55%S+8%C Mix

Fig. 5.73 Variation in CBR Values of Fly ash-Waste Sludge Mix with Curing Period

Fig. 5.74 Variation in CBR Values of Fly ash-Waste Sludge-Cement Mix with Curing Period

Fig. 6.1 A View of Loading Frame and Plate Load Test Setup

Fig. 6.2 Plan of General Arrangement of the Test Setup

Fig. 6.3 Plate Loading Test in Progress on Fly ash
Fig. 6.4 Plate Load Test on Fully Submerged Fly ash

Fig. 6.5 Mixing of Waste Sludge with Fly ash

Fig. 6.6 Plate Load Test on Fly ash (Effect of Relative Compaction)

Fig. 6.7 Load-Settlement Curves of Fly ash

Fig. 6.8 Effect of Fresh, Aging and Submergence on Load-Settlement Behaviour of 92%FA+8%C Mix

Fig. 6.9 Load-Settlement Curves of Compacted Fly ash+Waste Sludge

Fig. 6.10 Load-Settlement Curves of Aged Fly ash+Waste Sludge

Fig. 6.11 Load-Settlement Curves for Compacted and Compacted Submerged Fly ash+Waste Sludge

Fig. 6.12 Load-Settlement Curves for Aged and Aged Submerged Fly ash+Waste Sludge

Fig. 6.13 Ultimate Load Intensity of Compacted and Aged Fly ash+Waste Sludge

Fig. 6.14 Load-Settlement Curves for Compacted and Compacted Submerged Fly ash+Cement+Waste Sludge Blend

Fig. 6.15 Load-Settlement Curves for Aged and Aged Submerged Fly ash+Cement+Waste Sludge Blend

Fig. 6.16 Ultimate Load Intensity of Compacted and Aged Fly ash+Cement+Waste Sludge Blend

Fig. 6.17 Variation of E with σ_3

Fig. 6.18 Pre-consolidation Pressure by Onitsuka et al. (1995)

Fig. 6.19 Values of Input Parameters for Condition-I
 (i) Modified Failure Envelope
 (ii) Variation of E with σ_3
 (iii) Pre-consolidation Pressure (p_c)
Fig. 6.20 Values of Input Parameters for Condition-II
 (i) Modified Failure Envelope
 (ii) Variation of E with σ_3
 (iii) Pre-consolidation Pressure (p_c)

Fig. 6.21 Values of Input Parameters for Condition-III
 (i) Modified Failure Envelope
 (ii) Variation of E with σ_3
 (iii) Pre-consolidation Pressure (p_c)

Fig. 6.22 Values of Input Parameters for Condition-IV
 (i) Modified Failure Envelope
 (ii) Variation of E with σ_3
 (iii) Pre-consolidation Pressure (p_c)

Fig. 6.23 Observed and Computed Load-Settlement Values for Condition-I

Fig. 6.24 Observed and Computed Load-Settlement Values for Condition-II

Fig. 6.25 Observed and Computed Load-Settlement Values for Condition-III

Fig. 6.26 Observed and Computed Load-Settlement Values for Condition-IV