TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
<th>List No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 Aim and Objectives

2. REVIEW OF THE LITERATURE

2.1 Background
2.2 How bacteria become resistant to antibiotics
2.3 Classification of broad-spectrum \(\beta \)-lactamases
2.4 Resistance to cephalosporins: the "classical" ESBLs
2.5 AmpC \(\beta \)-lactamase
2.5.1 History and chronology of AmpC \(\beta \)-lactamases
2.5.2 Origin and evolution of AmpC \(\beta \)-lactamases
2.5.3 Epidemiology of plasmid mediated AmpC enzymes
2.5.4 Relationship of chromosomal and plasmid-encoded AmpC enzymes
2.5.5 Genetic Environment of \(\text{bla}_{\text{ampC}} \) gene
2.5.6 Enzymatic properties
2.5.7 Susceptibility to different antimicrobials and mechanisms of resistance
2.5.8 Detection of AmpC \(\beta \)-lactamases
2.6 Mobilization of broad-spectrum \(\beta \)-lactamases
2.7 Mobilization of \(\text{bla}_{\text{ampC}} \) gene
2.8 Impact of mobile Genetic elements as carriers of broad-spectrum \(\beta \)-lactamases on epidemiology and co-resistance selection
2.9 Extended-spectrum \(\beta \)-lactamases
2.9.1 SHV and TEM \(\beta \)-lactamases
2.9.2 Emergence and origin of CTX-M ESBLs
2.9.2.1 Dissemination of \(\text{bla}_{\text{CTX-M}} \) genes

3. MATERIAL AND METHODS

3.1 Materials
3.2 Methods
3.2.1 Clinical samples collection
3.2.2 Antimicrobial susceptibility testing
3.2.2.1 Turbidity standard for inoculum preparation
3.2.2.2 Disc diffusion susceptibility testing
3.2.3 Phenotypic detection of AmpC-producers
3.2.3.1 Phenotypic confirmatory test
3.2.4 Genotypic characterization of cefoxitin-resistant isolates
3.2.4.1 DNA template preparation
3.2.4.1.1 Detection of \(\text{bla}_{\text{ampC}} \) genes
3.2.4.1.2 Detection of plasmid-mediated AmpC \(\beta \)-lactamases
3.2.4.1.3 Characterization of specific AmpC type
3.2.4.2 Analysis of co-carriage of class C and class A \(\beta \)-lactamases
3.2.4.2.1 Detection of \(\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{TEM}}, \) and \(\text{bla}_{\text{SHV}} \)
3.2.4.3 Characterization of mobile genetic elements

3.2.4.3.1 Detection of insertion sequences
3.2.4.3.1.1 Detection of ISecpl
3.2.4.3.1.2 Detection of IS26

3.2.4.3.2 Characterization of integrons
3.2.4.3.2.1 Detection of Sul-1 type class 1 integrons
3.2.4.3.2.2 Detection of ISCR1 (ORF513)

3.2.5 Visualization of amplified product

3.2.6 Typing of cefoxitin-resistant isolates by RAPD-PCR
3.2.6.1 RAPD typing

3.2.7 Plasmid analysis

4. RESULTS 89-120

4.1 Bacterial isolates
4.2 Patients' Demography
4.3 Sample and wards from where cefoxitin-resistant isolates were obtained
4.4 Antimicrobial susceptibility testing
 4.4.1 Antibiotic resistance pattern
 4.4.2 Antibiotic resistance rates and pattern from different wards
4.5 AmpC β-lactamase
 4.5.1 AmpC β-lactamase detection
 4.5.2 bla_{ampC} detection
 4.5.3 Sequencing of representative isolates
4.6 Detection of class A ESBLs and co-production of bla_{ampC} and bla_{ESBLa}
 4.6.1 Occurrence of bla genes in isolates obtained from various wards
4.7 Mobile genetic elements (MGEs)
 4.7.1 Detection of IS26 elements
 4.7.2 Association of MGEs with bla_{ampC}
 4.7.3 bla genes and MGEs
 4.7.4 Detection of Conserved Sequence (CS) regions
4.8 Analysis of bla_{ampC}-harboring isolates
 4.8.1 Co-occurrence of various bla_{ampC} families with class A ESBLs
 4.8.2 Association of bla_{ampC} families and various mobile genetic elements
4.9 Comparative trend of bla genes and MGEs in 2009 and 2010
4.10 Plasmid analysis
4.11 RAPD-typing

5. DISCUSSION 121-135

6. SUMMARY 136-142
7. CONCLUSION 143-146
8. BIBLIOGRAPHY 147-173
9. ANNEXURES