CHAPTER 4

ON HOMOTYPICAL IDENTITIES

§ 4.1. INTRODUCTION

In [37], Khan, jointly with Shah obtained some partial results by establishing some sufficient conditions for homotypical identities whose both sides contain repeated variables and are preserved under epis in conjunction with a seminormal identity. In the present chapter, we generalize these results [37, Theorems 2.5, 2.7 and 3.1]. However, a full determination of all semigroup identities that are preserved under epis in conjunction with a seminormal identity remains an open problem.

In Section 4.2, we consider balanced identities, while Section 4.3 deals with non-balanced homotypical identities.

§ 4.2. BALANCED IDENTITIES

An identity \(u = v \) is said to be balanced if \(\lvert x \rvert_u = \lvert x \rvert_v, \forall x \in C(u)(= C(v)) \).

In this section, we establish some sufficient conditions for balanced identities to be preserved under epis in conjunction with a seminormal identity.

Lemma 4.2.1: Let \(U \) be a permutative subsemigroup satisfying a seminormal permutation identity of a semigroup \(S \) such that \(\text{Dom}(U, S) = S \). If \(U \) satisfies

\[
x_1^{p_1} \cdots x_r^{p_r} u(z_1, \ldots, z_\ell) y_1^{q_1} \cdots y_s^{q_s} = x_1^{p_1} \cdots x_r^{p_r} v(z_1, \ldots, z_\ell) y_1^{q_1} \cdots y_s^{q_s}
\]

(63)

where \(u \) and \(v \) are any words in \(z_1, z_2, \ldots, z_\ell \), then the identity (63) is also satisfied for all \(x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_s \in S \) and \(z_1, z_2, \ldots, z_\ell \in U \), where \(p_1, \ldots, p_r, q_1, \ldots, q_s \) are any positive integers such that \(p_1 \leq p_2 \leq \cdots \leq p_{r-1} \leq p_r ; q_s \leq q_{s-1} \cdots \leq q_2 \leq q_1 (r, s \geq 1) \).

Proof. Take any semigroups \(U \) and \(S \) with \(U \) a subsemigroup of \(S \) such that \(\text{Dom}(U, S) = S \). Since \(U \) satisfies (1), by Result 1.5.5, \(S \) also satisfies (1). Now we
shall show that the identity (63) satisfied by \(U \) is also satisfied when \(x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_s \in S \) and \(z_1, z_2, \ldots, z_\ell \in U \).

Case (i): First, take any \(x_1, x_2, \ldots, x_r \in S \) and \(y_1, y_2, \ldots, y_s, z_1, z_2, \ldots, z_\ell \in U \). If \(x_1, x_2, \ldots, x_r \in \U \), then (63) holds trivially. So assume without loss of generality that \(x_1 \in S \setminus U \). Let (2) be a zigzag of minimal length \(m \) over \(U \) with value \(x_1 \).

Letting \(y = y_1^{q_1} y_2^{q_2} \ldots y_s^{q_s} \), we have

\[
x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} u(z_1, z_2, \ldots, z_\ell) y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s}
\]

\[
= y_m^{p_1} a_{2m} x_2^{p_2} \cdots x_r^{p_r} u(z_1, z_2, \ldots, z_\ell) y
\]

(by the zigzag equations and Result 1.5.13)

\[
= y_m^{p_1} a_{2m} x_2^{p_2} \cdots x_r^{p_r} v(z_1, z_2, \ldots, z_\ell) y
\]

(as \(U \) satisfies (63))

\[
= x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} v(z_1, z_2, \ldots, z_\ell) y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s}
\]

(by the zigzag equations and Result 1.5.13 and as \(y = y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s} \))

as required.

Next, we assume inductively that the result is true for all \(x_1, \ldots, x_{k-1} \in S \) and \(x_1, \ldots, x_r \in \U \). We shall prove that the result is also true for all \(x_1, \ldots, x_k \in S \) and \(x_{k+1}, \ldots, x_r \in \U \). Again if \(x_k \in \U \), then the result follows by inductive hypothesis. So assume that \(x_k \in S \setminus \U \). Let (2) be a zigzag of minimal length \(m \) over \(U \) with value \(x_k \).

Now, we have

\[
x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} u(z_1, z_2, \ldots, z_\ell) y
\]

\[
= x_1^{p_1} x_2^{p_2} \cdots x_{k-1}^{p_{k-1}} y_m^{p_k} a_{2m} x_{k+1}^{p_{k+1}} \cdots x_r^{p_r} u(z_1, z_2, \ldots, z_\ell) y
\]

(by Result 1.5.13 and zigzag equations)

\[
= w y_m^{(m)} b_1^{(m)} \cdots b_{k-1}^{(m)} p_k \cdots p_{k+1} \cdots p_r a_{2m} x_{k+1}^{p_{k+1}} \cdots x_r^{p_r} u(z_1, z_2, \ldots, z_\ell) y
\]

(by Results 1.5.10 and 1.5.11 for some \(b_1^{(m)}, \ldots, b_{k-1}^{(m)} \in U \) and \(y_m^{(m)} \in S \setminus \U \) as \(y_m \in S \setminus \U \) and where \(w = x_1^{p_1} \cdots x_{k-1}^{p_{k-1}} \) and where \(a_{2m} = a_{2m-1} t_m \) with \(t_m \in S \setminus \U \)

\[
= w y_m^{(m)} v^{(m)} b_1^{(m)} \cdots b_{k-1}^{(m)} a_{2m} x_{k+1}^{p_{k+1}} \cdots x_r^{p_r} u(z_1, z_2, \ldots, z_\ell) y
\]

(by Result 1.5.11 as \(y_m^{(m)}, t_m \in S \setminus \U \) and where \(v^{(m)} = b_1^{(m)} p_1 \cdots b_{k-1}^{(m)} p_{k-1} \))
\[\begin{align*}
&= w y_m^{(m)p_k} v^{(m)} b_1^{(m)p_1} \ldots b_{k-1}^{(m)p_{k-1}} a_m^{p_k} x_{k+1}^{p_k} \ldots x_r^{p_r} v(z_1, z_2, \ldots, z_t) y \\
&\quad \text{(as } U \text{ satisfies (63))} \\
&= w y_m^{(m)p_k} b_1^{(m)p_k} \ldots b_{k-1}^{(m)p_{k-1}} a_m^{p_k} x_{k+1}^{p_k} \ldots x_r^{p_r} v(z_1, z_2, \ldots, z_t) y \\
&\quad \text{(by Result 1.5.11 and the definition of } v^{(m)}) \\
&= x_1^{p_1} x_2^{p_2} \ldots x_{k-1}^{p_{k-1}} x_k^{p_k} x_{k+1}^{p_k} \ldots x_r^{p_r} v(z_1, z_2, \ldots, z_t) y \\
&\quad \text{(as } y = y_1^{y_1} y_2^{y_2} \ldots y_s^{y_s}) \\
&\quad \text{(by Result 1.5.13 and zigzag equations)} \\
&\quad \text{as required.}
\end{align*}\]

Case (ii): Now, we show that (63) is satisfied for all \(x_1, \ldots, x_r, y_1, \ldots, y_s \in S\) and \(z_1, \ldots, z_t \in U\). Again, we can assume without loss of generality that \(y_1 \in S \setminus U\). Let (2) be a zigzag of minimal length \(m\) over \(U\) with value \(y_1\). Now, as the equalities (64) and (65) below follow by Results 1.5.10 and 1.5.11 for some \(b_2^{(1)}, \ldots, b_s^{(1)} \in U\) and \(t_1^{(1)}\) in \(S \setminus U\) as \(y_1, t_1 \in S \setminus U\) and where \(w^{(1)} = b_2^{(1)n-q_2} \ldots b_s^{(1)n-q_s}\) respectively. Letting \(x = x_1^{p_1} x_2^{p_2} \ldots x_r^{p_r}\), we have

\[\begin{align*}
& x_1^{p_1} x_2^{p_2} \ldots x_r^{p_r} u(z_1, z_2, \ldots, z_t) y_1^{y_1} y_2^{y_2} \ldots y_s^{y_s} \\
&= x u(z_1, z_2, \ldots, z_t) a_0^{a_0} t_1^{t_1} y_1^{y_1} y_2^{y_2} \ldots y_s^{y_s} \\
&\quad \text{(by the zigzag equations and Result 1.5.13)} \\
&= x u(z_1, z_2, \ldots, z_t) a_0^{a_0} b_2^{(1)q_2} \ldots b_s^{(1)q_s} t_1^{(1)} y_2^{y_2} \ldots y_s^{y_s} \quad \text{(64)} \\
&= x u(z_1, z_2, \ldots, z_t) a_0^{a_0} b_2^{(1)q_2} \ldots b_s^{(1)q_s} w^{(1)} t_1^{(1)q_1} y_2^{y_2} \ldots y_s^{y_s} \quad \text{(65)} \\
&= x v(z_1, z_2, \ldots, z_t) a_0^{a_0} b_2^{(1)q_2} \ldots b_s^{(1)q_s} w^{(1)} t_1^{(1)q_1} y_2^{y_2} \ldots y_s^{y_s} \\
&\quad \text{(as } U \text{ satisfies (63))} \\
&= x v(z_1, z_2, \ldots, z_t) a_0^{a_0} b_2^{(1)q_2} \ldots b_s^{(1)q_s} t_1^{(1)q_1} y_2^{y_2} \ldots y_s^{y_s} \\
&\quad \text{(by Result 1.5.11 and definition of } w^{(1)}) \\
\end{align*}\]
Next, we assume inductively that the result is true for all \(y_1, \ldots, y_{k-1} \in S\) and \(y_k, \ldots, y_s \in U\). We shall prove that the result is also true for all \(y_1, \ldots, y_{k-1}, y_k\) in \(S\) and \(y_{k+1}, \ldots, y_s \in U\). Again if \(y_k \in U\), then the result follows by inductive hypothesis. So assume that \(y_k \in S \setminus U\). Let (2) be a zigzag of minimal length \(m\) over \(U\) with value \(y_k\). Now as the equalities (66) and (67) below follow by Results 1.5.10 and 1.5.11 for some \(b_k^{(1)}, \ldots, b_s^{(1)} \in U\) and \(t_1^{(1)} \in S \setminus U\) and where \(v = y_k^{q_k+1} \cdots y_s^{q_s}\), and by Result 1.5.11 as \(a_0 = y_1 a_1, y_1, t_1^{(1)} \in S \setminus U\) and where \(w^{(1)} = b_k^{(1)} a_{q_k+1} \cdots b_s^{(1)} a_{q_s}\), respectively, we have

\[
x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} u(z_1, z_2, \ldots, z_r) y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s}
\]

(by inductive hypothesis)

\[
x_1(x_1, x_2, \ldots, x_r) y_1^{q_1} \cdots y_k^{q_k-1} a_0^{q_k} b_k^{q_k+1} \cdots b_s^{q_s} t_1^{q_1} v
\]

(by Result 1.5.13 and zigzag equations)
Corollary 4.2.2: Let U be a permutative subsemigroup satisfying a seminormal permutation identity of a semigroup S such that $\text{Dom}(U, S) = S$. Let t_1, t_2, \ldots, t_ℓ be any positive integers. If U satisfies

$$x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} z_1^{t_1} z_2^{t_2} \cdots z_j^{t_j} y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s} = x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} z_1^{t_1} z_2^{t_2} \cdots z_j^{t_j} y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s} \quad (68)$$

where j is any permutation of the set $\{1, 2, \ldots, \ell\}$ and $p_1, p_2, \ldots, p_r, q_1, q_2, \ldots, q_s$, are any positive integers such that $p_1 \leq p_2 \leq \cdots \leq p_{r-1} \leq p_r$, $q_s \leq q_{s-1} \cdots \leq q_2 \leq q_1 (r, s \geq 1)$, then the identity (68) is also satisfied for all $x_1, x_2, \ldots, x_r, y_1, \ldots, y_s \in S$ and $z_1, z_2, \ldots, z_j \in U$.

Proposition 4.2.3: Let U be a permutative subsemigroup satisfying a seminormal permutation identity of a semigroup S such that $\text{Dom}(U, S) = S$. Let u and v be any words in w_1, \ldots, w_ℓ. If the identity

$$x_1^{p_1} \cdots x_r^{p_r} u(w_1, \ldots, w_\ell) y_1^{q_1} \cdots y_s^{q_s} = x_1^{p_1} \cdots x_r^{p_r} v(w_1, \ldots, w_\ell) y_1^{q_1} \cdots y_s^{q_s}$$

holds for all $x_1, \ldots, x_r, y_1, \ldots, y_s \in S$ and $w_1, \ldots, w_\ell \in U$. Then the identity

$$x_1^{p_1} \cdots x_r^{p_r} u(w_1, \ldots, w_\ell) y^q = x_1^{p_1} \cdots x_r^{p_r} v(w_1, \ldots, w_\ell) y^q$$

$$[x^p u(w_1, \ldots, w_\ell) y_1^{q_1} \cdots y_s^{q_s} = x^q v(w_1, \ldots, w_\ell) y_1^{q_1} \cdots y_s^{q_s}]$$

also holds for all $y \in S \setminus U$, $x_1, \ldots, x_r \in S$, $w_1, \ldots, w_\ell \in U$ and positive integer $q \geq q_1$ [for all $x \in S \setminus U$, $y_1, \ldots, y_s \in S$, $w_1, \ldots, w_\ell \in U$ and positive integer $p \geq p_1$].

Proof. We have

$$x_1^{p_1} \cdots x_r^{p_r} u(w_1, w_2, \ldots, w_\ell) y^q$$

$$= x_1^{p_1} \cdots x_r^{p_r} u(w_1, w_2, \ldots, w_\ell) y^q y^{q-q_1}$$

$$= x_1^{p_1} \cdots x_r^{p_r} u(w_1, w_2, \ldots, w_\ell) a_1^{q_1} \cdots a_s^{q_s} y^{q-q_1}$$

(by Results 1.5.10 and Corollary 1.5.12 for some $a_1, \ldots, a_s \in U$ and $y' \in S \setminus U$ as $a_1 = z_1 b_1$ for some $z_1' \in S \setminus U$, $b_1 \in U$)

$$= x_1^{p_1} \cdots x_r^{p_r} u(w_1, w_2, \ldots, w_\ell) a_1^{q_1} \cdots a_s^{q_s} w y^{q-q_1}$$

(by Corollary 1.5.12 as $a_1 = z_1 b_1$ for some $z_1' \in S \setminus U$, $b_1 \in U$ and where $w = a_2^{q_2-q_1} \cdots a_s^{q_s-q_1}$)
\[x_1^{p_1} \cdots x_r^{p_r} v(w_1, \ldots, w_\ell) a_1^{q_1} \cdots a_s^{q_s} w y^{q_1} y^{q_s - q_1} \]
\[= x_1^{p_1} \cdots x_r^{p_r} v(w_1, \ldots, w_\ell) a_1^{q_1} \cdots a_s^{q_s} y^{q_1} y^{q_s - q_1} \]
(by definition of \(w \))
\[= x_1^{p_1} \cdots x_r^{p_r} v(w_1, \ldots, w_\ell) y^{q_1} y^{q_s - q_1} \]
(by Result 1.5.10 and Corollary 1.5.12 as \(y^{q_1} = a_1^{q_1} \cdots a_s^{q_s} y^{q_1} \))
\[= x_1^{p_1} \cdots x_r^{p_r} v(w_1, \ldots, w_\ell) y^q \]
as required. Dual statement may be proved on the similar lines. \(\square \)

Theorem 4.2.4: Let \((1)\) be a seminormal identity and let \(p_1, p_2, \ldots, p_r, q_1, \ldots, q_s \) be any positive integers such that \(p_1 \leq p_2 \leq \cdots \leq p_{r-1} \leq p_r; q_s \leq q_{s-1} \cdots \leq q_2 \leq q_1 (r, s \geq 1) \) with \(p_1 + \cdots + p_r \geq q_0 - 2 \) and \(q_1 + \cdots + q_s \geq h_0 - 2 \) respectively. Then for any integer \(p \geq \max\{p_r, q_1\} \), all semigroup identities of the form
\[x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_\ell^{p_1} y_1^{q_1} \cdots y_s^{q_s} = x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_\ell^{p_1} y_1^{q_1} \cdots y_s^{q_s} \]
(69)
where \(\ell \geq 3 \) and \(j \) is any permutation of the set \(\{1, 2, \ldots, \ell\} \), are preserved under epis in conjunction with \((1)\).

Proof. Take any semigroups \(U \) and \(S \) with \(U \) dense in \(S \). Assume \(U \) and hence \(S \) by Result 1.5.5, satisfy the identity \((1)\). We shall show that if \(U \) satisfies \((69)\), then so does \(S \). So let \(z_1, z_2, \ldots, z_\ell \in S \). If \(z_1, z_2, \ldots, z_\ell \in U \), then the result holds by Corollary 4.2.2.

For ease of writing, we introduce some notation:

\[w_1(x_1, \ldots, x_r, z_{j_1}, \ldots, z_{j_\ell}, y_1, \ldots, y_s) \]
\[= x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_1} \cdots z_{j_\ell}^{p_1} y_1^{q_1} \cdots y_s^{q_s} \]
\[= u_1(x_1, \ldots, x_r, z_1, \ldots, z_\ell, y_1, \ldots, y_s) \]
and

\[w_2(x_1, \ldots, x_r, z_{j_1}, \ldots, z_{j_\ell}, y_1, \ldots, y_s) \]
\[= x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_1} \cdots z_{j_\ell}^{p_1} y_1^{q_1} \cdots y_s^{q_s} \]
\[= u_2(x_1, \ldots, x_r, z_1, \ldots, z_\ell, y_1, \ldots, y_s) \]
Using these definitions, the theorem asserts that

\[w_1(x_1, \ldots, x_r, z_{j_1}, \ldots, z_{j_q}, y_1, \ldots, y_s) = w_2(x_1, \ldots, x_r, z_{j_1}, \ldots, z_{j_q}, y_1, \ldots, y_s) \]

or, equivalently, that

\[u_1(x_1, \ldots, x_r, z_1, \ldots, z_{\ell}, y_1, \ldots, y_s) = u_2(x_1, \ldots, x_r, z_1, \ldots, z_{\ell}, y_1, \ldots, y_s) \]

We will prove the theorem by induction on \(q \), where the elements \(x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_s, z_{j_1}, \ldots, z_{j_q} \) lie in \(S \) (\(q \geq 2 \)) and the remaining elements \(z_{j_1}, \ldots, z_{j_\ell} \) lie in \(U \).

First for \(q = 2 \), that is, when \(x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_s, z_{j_1} \in S \) and \(z_{j_1}, \ldots, z_{j_2} \in U \), we wish to show that (69) holds. When \(z_{j_1} \in U \), (69) holds by Corollary 4.2.2. If, on the other hand \(z_{j_1} \in S \setminus U \), let (2) be a zigzag of minimal length \(m \) over \(U \) with value \(z_{j_1} \).

Case (i). \(j_1 = 1 \). Now

\[
\begin{align*}
x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_{j_1}} & \cdots z_{j_\ell}^{p_{j_\ell}} y_1^{q_1} \cdots y_s^{q_s} \\
= x_1^{p_1} \cdots x_r^{p_r} y_m a_{2m} z_{j_2}^{p_{j_2}} \cdots z_{j_\ell}^{p_{j_\ell}} y_1^{q_1} \cdots y_s^{q_s} & \text{(by the zigzag equations and Result 1.5.13)} \\
= x_1^{p_1} \cdots x_r^{p_r} y_m a_{2m} y_1^{q_1} y_1^{q_1} \cdots y_s^{q_s} & \text{by Result 1.5.11 for some } a_1^{(m)} \ldots a_r^{(m)} \in U \text{ and } y_m^{(m)} \in S \setminus U \text{ as } y_m \in S \setminus U \text{ and } a_{2m} = a_{2m-1} l_m \text{ with } l_m \in S \setminus U \\
= x_1^{p_1} \cdots x_r^{p_r} y_m a_{2m} y_1^{q_1} y_1^{q_1} \cdots y_s^{q_s} & \text{(by Result 1.5.11 as } y_m^{(m)} \text{, } t_m \in S \setminus U \text{ and where } w^{(m)} = a_{1}^{(m)pr-p_r-1} a_r^{(m)pr}} \\
= x_1^{p_1} \cdots x_r^{p_r} y_m a_{2m} y_1^{q_1} y_1^{q_1} \cdots y_s^{q_s} & \text{(by Corollary 4.2.2)} \\
= x_1^{p_1} \cdots x_r^{p_r} y_m a_{2m} y_1^{q_1} y_1^{q_1} \cdots y_s^{q_s} & \text{(by definition of } w^{(m)}) \\
= x_1^{p_1} \cdots x_r^{p_r} y_m a_{2m} y_1^{q_1} y_1^{q_1} \cdots y_s^{q_s} & \text{(by Results 1.5.10 and 1.5.11 as } y_m = y_m^{(m)pr-p_r} a_1^{(m)pr} \cdots a_r^{(m)pr}} \\
= x_1^{p_1} \cdots x_r^{p_r} y_m a_{2m} y_1^{q_1} y_1^{q_1} \cdots y_s^{q_s} & \text{(by the zigzag equations and Result 1.5.13)}
\end{align*}
\]

74
as required.

Case (ii). \(1 < j_1 < \ell\). Now letting \(k = j_1\), we have

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} \cdots x_{j_\ell}^{(m)} y_1 \cdots y_s
\]

(by the zigzag equations and Result 1.5.13)

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} a_m a_{2m} \cdots y_1 y_1^{q_1} \cdots y_s
\]

(by Results 1.5.10 and 1.5.11 for some \(a_1^{(m)}, \ldots, a_r^{(m)} \in U\) and \(y_m^{(m)} \in S \setminus U\) as \(y_m \in S \setminus U\) and \(a_{2m} = a_{2m-1} t_m\) with \(t_m \in S \setminus U\))

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

(by Result 1.5.11 as \(y_m^{(m)}\), \(t_m \in S \setminus U\) and where \(w^{(m)} = a_1^{(m) - p_{j_1} - p_r - 1}\))

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} w_1(a_1^{(m)}, \ldots, a_r^{(m)}, a_{2m}, \cdots, y_1, y_1^{q_1}, \cdots, y_s)
\]

(by Corollary 4.2.2)

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

(by Results 1.5.10 and 1.5.11 for some \(a_1^{(m)}, \ldots, a_r^{(m)} \in U\) and \(y_m^{(m)} \in S \setminus U\) as \(y_m^{(m)}\) and \(t_m \in S \setminus U\))

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} a_1^{(m)} a_2^{(m)} \cdots y_1 y_1^{q_1} \cdots y_s
\]

where the last equality holds by the zigzag equations and Result 1.5.11 as \(y_m^{(m)}\), \(t_m \in S \setminus U\). Now, setting \(u^{(m)} = x_1^{(m)} \cdots x_{j_1}^{(m)} y_m^{p_{j_1} - p_r} y_m^{p_r} w^{(m)} u^{(m)}\), we have

\[
x_1^{(m)} \cdots x_{j_1}^{(m)} y_1 y_1^{q_1} \cdots y_s
\]

\[
u^{(m)} a_1^{(m)} \cdots a_r^{(m)} z_1 z_1^{p_{j_1} - p_r} z_{k-1} z_{k-1}^{p_{j_1} - p_r} \cdots z_{k-1} z_{k-1}^{p_{j_1} - p_r} z_{k} z_{k}^{p_{j_1} - p_r} \cdots z_{k} z_{k}^{p_{j_1} - p_r} \cdots y_1 y_1^{q_1} \cdots y_s
\]

\[
u^{(m)} a_1^{(m)} \cdots a_r^{(m)} z_1 z_1^{p_{j_1} - p_r} z_{k-1} z_{k-1}^{p_{j_1} - p_r} \cdots z_{k-1} z_{k-1}^{p_{j_1} - p_r} y_1 y_1^{q_1} \cdots y_s
\]

\[
u^{(m)} a_1^{(m)} \cdots a_r^{(m)} z_1 z_1^{p_{j_1} - p_r} z_{k-1} z_{k-1}^{p_{j_1} - p_r} \cdots z_{k-1} z_{k-1}^{p_{j_1} - p_r} y_1 y_1^{q_1} \cdots y_s
\]

\[
u^{(m)} a_1^{(m)} \cdots a_r^{(m)} z_1 z_1^{p_{j_1} - p_r} z_{k-1} z_{k-1}^{p_{j_1} - p_r} \cdots z_{k-1} z_{k-1}^{p_{j_1} - p_r} y_1 y_1^{q_1} \cdots y_s
\]

\[
u^{(m)} a_1^{(m)} \cdots a_r^{(m)} z_1 z_1^{p_{j_1} - p_r} z_{k-1} z_{k-1}^{p_{j_1} - p_r} \cdots z_{k-1} z_{k-1}^{p_{j_1} - p_r} y_1 y_1^{q_1} \cdots y_s
\]

\[
u^{(m)} a_1^{(m)} \cdots a_r^{(m)} z_1 z_1^{p_{j_1} - p_r} z_{k-1} z_{k-1}^{p_{j_1} - p_r} \cdots z_{k-1} z_{k-1}^{p_{j_1} - p_r} y_1 y_1^{q_1} \cdots y_s
\]

\[
u^{(m)} a_1^{(m)} \cdots a_r^{(m)} z_1 z_1^{p_{j_1} - p_r} z_{k-1} z_{k-1}^{p_{j_1} - p_r} \cdots z_{k-1} z_{k-1}^{p_{j_1} - p_r} y_1 y_1^{q_1} \cdots y_s
\]

\[
u^{(m)} a_1^{(m)} \cdots a_r^{(m)} z_1 z_1^{p_{j_1} - p_r} z_{k-1} z_{k-1}^{p_{j_1} - p_r} \cdots z_{k-1} z_{k-1}^{p_{j_1} - p_r} y_1 y_1^{q_1} \cdots y_s
\]

75
\[u^{(m)} a_1^{(m)} p_1 \cdots a_r^{(m)} p_r z_1^{(p)} \cdots z_{k-1}^{(p)} a_{2m-1}^{(p)} b_{k+1}^{(p)} \cdots b_{\ell}^{(p)} c_1^{(q_1)} \cdots c_s^{(q_s)} e^{(m)} t_m^{(m)} p \]

(by Result 1.5.11 as \(y_{m}^{(m)} t_m^{(m)} \in S \cup \)) and where \(e^{(m)} = c_1^{(m)p-q_1} \cdots c_s^{(m)p-q_s} \)

\[u^{(m)} a_1^{(m)} p_1 \cdots a_r^{(m)} p_r z_1^{(p)} \cdots z_{k-1}^{(p)} a_{2m-1}^{(p)} b_{k+1}^{(p)} \cdots b_{\ell}^{(p)} c_1^{(q_1)} \cdots c_s^{(q_s)} \nu^{(m)} \]

(where \(\nu^{(m)} = e^{(m)} t_m^{(m)} p d \))

\[u^{(m)} u_2(a_1^{(m)}, \ldots, a_r^{(m)}, z_1^{(m)}, \ldots, z_{k-1}^{(m)} a_{2m-1}^{(m)}, b_{k+1}^{(m)}, \ldots, b_{\ell}^{(m)}, c_1^{(m)}, \ldots, c_s^{(m)}) \nu^{(m)} \]

\[u^{(m)} u_1(a_1^{(m)}, \ldots, a_r^{(m)}, z_1^{(m)}, \ldots, z_{k-1}^{(m)} a_{2m-1}^{(m)}, b_{k+1}^{(m)}, \ldots, b_{\ell}^{(m)}, c_1^{(m)}, \ldots, c_s^{(m)}) \nu^{(m)} \]

(by Corollary 4.2.2)

Now the word \(u_1(\xi_1, \ldots, \xi_r, z_1, z_2, \ldots, z_l, \xi'_1, \ldots, \xi'_s) \) begins with \(\xi_1^{p_1} \cdots \xi_r^{p_r} z_1^{p} \) which equals \(\xi_1^{p_1} \cdots \xi_r^{p_r} z_1^{p} \). So, the above product in \(S \) contains \(y_{m}^{(m)p} y_{m}^{(m)p} z_1^{p} \). Thus, using Result 1.5.11 and the fact that \(y_{m}^{(m)p} y_{m}^{(m)p} z_1^{p} \) from the zigzag equations, we have

\[x_1^{p_1} \cdots x_r^{p_r} z_1^{p} y_1^{q_1} \cdots y_s^{q_s} \]

\[= u^{(m)} u_1(a_1^{(m)}, \ldots, a_r^{(m)}, z_1^{(m)}, \ldots, z_{k-1}^{(m)} a_{2m-1}^{(m)}, b_{k+1}^{(m)}, \ldots, b_{\ell}^{(m)}, c_1^{(m)}, \ldots, c_s^{(m)}) \nu^{(m)} \]

\[= u^{(m-1)} u_1(a_1^{(m-1)}, \ldots, a_r^{(m-1)}, z_1^{(m-1)}, \ldots, z_{k-1}^{(m-1)} a_{2m-1}^{(m-1)}, b_{k+1}^{(m)}, \ldots, b_{\ell}^{(m)}, c_1^{(m)}, \ldots, c_s^{(m)}) \nu^{(m)} \]

(where \(u^{(m-1)} = x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{(m-1)p} z_1^{(m-1)} a_{2m-1}^{(m-1)} b_{k+1}^{(m-1)} \cdots b_{\ell}^{(m-1)}, c_1^{(m-1)}, \ldots, c_s^{(m-1)}) \nu^{(m)} \) and by Results 1.5.10 and 1.5.11 for some \(a_1^{(m-1)}, \ldots, a_r^{(m-1)} \in U \) and \(y_{m-1}^{(m-1)} \in S \cup \) as \(y_{m-1} \) and \(t_m^{(m-1)} \in S \cup \) (by Corollary 4.2.2)

\[= x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{(m-1)p} z_1^{(m-1)} a_{2m-1}^{(m-1)} b_{k+1}^{(m-1)} \cdots b_{\ell}^{(m-1)}, c_1^{(m-1)}, \ldots, c_s^{(m-1)}) \nu^{(m)} \]

(by definition of \(u^{(m-1)} \) and \(v^{(m)} \))

\[= x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{(m-1)p} z_1^{(m-1)} a_{2m-1}^{(m-1)} b_{k+1}^{(m-1)} \cdots b_{\ell}^{(m-1)}, c_1^{(m)}, \ldots, c_s^{(m-1)p} \]

(by definition of \(e^{(m)} \))

\[= x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{(m-1)p} z_1^{(m-1)} a_{2m-1}^{(m-1)} b_{k+1}^{(m-1)} \cdots b_{\ell}^{(m-1)}, c_1^{(m)}, \ldots, c_s^{(m)} \]

(by Result 1.5.11 as \(t_m^{(m)} = c_1^{(m)p} \cdots c_s^{(m)} p \))

76
Continuing this way, we obtain

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} y_1^{p_1} \cdots y_s^{p_s}
\]

(by Result 1.5.11 as \(t_m = b_{k+1} \cdots b_{(m)p} t_{(m)p} \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} d
\]

(by the zigzag equations and Result 1.5.11 as \(y_{m-1}, t_{m-1} \in S \backslash U \))

Continuing this way, we obtain

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} y_1^{p_1} \cdots y_s^{p_s}
\]

(by Results 1.5.10 and 1.5.11 for some \(a_1^{(1)}, \ldots, a_r^{(1)} \in U \) and \(y_1^{(1)} \in S \backslash U \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} a_1^{(1)p_1} d
\]

(by Result 1.5.11 as \(y_{m-1} \in S \backslash U \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} w^{(1)} a_1^{(1)p_1} \cdots a_r^{(1)p_r} d
\]

(by Results 1.5.10 and 1.5.11 for some \(a_1^{(1)p_1}, \ldots, a_r^{(1)p_r} \in U \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} a_1^{(1)p_1} \cdots a_r^{(1)p_r} d
\]

(by Results 1.5.10 and 1.5.11 for some \(a_1^{(1)p_1}, \ldots, a_r^{(1)p_r} \in U \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} a_1^{(1)p_1} \cdots a_r^{(1)p_r} d
\]

(by Results 1.5.10 and 1.5.11 for some \(a_1^{(1)p_1}, \ldots, a_r^{(1)p_r} \in U \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} b^{(1)p_1} c_1^{(1)p_1} \cdots c_s^{(1)p_1} d
\]

(by Results 1.5.10 and 1.5.11 for some \(b^{(1)p_1}, \ldots, c_s^{(1)p_1} \in S \backslash U \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} b^{(1)p_1} c_1^{(1)p_1} \cdots c_s^{(1)p_1} d
\]

(by Results 1.5.10 and 1.5.11 for some \(b^{(1)p_1}, \ldots, c_s^{(1)p_1} \in S \backslash U \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} b^{(1)p_1} c_1^{(1)p_1} \cdots c_s^{(1)p_1} d
\]

(by Results 1.5.10 and 1.5.11 for some \(b^{(1)p_1}, \ldots, c_s^{(1)p_1} \in S \backslash U \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} b^{(1)p_1} c_1^{(1)p_1} \cdots c_s^{(1)p_1} d
\]

(by Results 1.5.10 and 1.5.11 for some \(b^{(1)p_1}, \ldots, c_s^{(1)p_1} \in S \backslash U \))

\[
x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_{m-1}} z_{j_1}^{p_{j_1}} \cdots z_{j_t}^{p_{j_t}} b^{(1)p_1} c_1^{(1)p_1} \cdots c_s^{(1)p_1} d
\]

(by Results 1.5.10 and 1.5.11 for some \(b^{(1)p_1}, \ldots, c_s^{(1)p_1} \in S \backslash U \))
As before, the above product contains the subword $y_1^{p_p}y_1^{p_p}a_p$. Thus, using Result 1.5.11 and the fact that $y_1a_1 = a_0$ from the zigzag equations, we have

$$x_1^{p_1}x_2^{p_2} \cdots x_r^{p_r}z_1^{p_1}z_2^{p_2} \cdots z_s^{p_s}y_1^{q_1}y_2^{q_2} \cdots y_s^{q_s}$$

$$= u^{(1)}u_1(a_1^{(1)}, \ldots, a_r^{(1)}, b_1^{(1)}, \ldots, b_{k+1}^{(1)}, \ldots, b_{t}^{(1)}, c_1^{(1)}, \ldots, c_s^{(1)})v^{(1)}$$

(by Corollary 4.2.2)

$$= u^{(1)}u_1(a_1^{(1)}, \ldots, a_r^{(1)}, b_1^{(1)}, \ldots, b_{k+1}^{(1)}, \ldots, b_{t}^{(1)}, c_1^{(1)}, \ldots, c_s^{(1)})v^{(1)}$$

(by definition of $e^{(1)}$).

$$= u^{(1)}u_1(a_1^{(1)}, \ldots, a_r^{(1)}, b_1^{(1)}, \ldots, b_{k+1}^{(1)}, \ldots, b_{t}^{(1)}, c_1^{(1)}, \ldots, c_s^{(1)})v^{(1)}$$

(by Corollary 4.2.2)

$$= u^{(1)}u_1(a_1^{(1)}, \ldots, a_r^{(1)}, b_1^{(1)}, \ldots, b_{k+1}^{(1)}, \ldots, b_{t}^{(1)}, c_1^{(1)}, \ldots, c_s^{(1)})v^{(1)}$$

(by definition of $e^{(1)}$).

$$= x_1^{p_1}x_2^{p_2} \cdots x_r^{p_r}z_1^{p_1}z_2^{p_2} \cdots z_s^{p_s}y_1^{q_1}y_2^{q_2} \cdots y_s^{q_s}$$

(as $v^{(1)} = e^{(1)}t_1^{(1)}p$).

This completes the proof in Case(ii).

Case(iii). $j_1 = \ell$. Now

$$x_1^{p_1} \cdots x_r^{p_r}z_1^{p_1} \cdots z_{j-1}^{p_1} \cdots z_{j-1}^{p_1}y_1^{q_1} \cdots y_s^{q_s}$$

$$= x_1^{p_1} \cdots x_r^{p_r}z_1^{p_1} \cdots z_{j-1}^{p_1} \cdots z_{j-1}^{p_1}y_1^{q_1} \cdots y_s^{q_s}$$

(by the zigzag equations and Result 1.5.13)
\[x_1^{p_1} \cdots x_r^{p_r} y_m^{p_r-p_1} y_m^{p_r-a_2m-2} \cdots z_j^{p_1} y_1^{q_1} \cdots y_s^{q_s} \]

(by Results 1.5.10 and 1.5.11 for some \(a_1^{(m)}, \ldots, a_r^{(m)} \in U \) and \(y_m^{(m)} \in S \setminus U \) as \(y_m \in S \setminus U \) and \(a_2m = a_2m-1 \) with \(t_m \in S \setminus U \))

\[x_1^{p_1} \cdots x_r^{p_r} y_m^{p_r-p_1} y_m^{p_r-a_2m-2} \cdots z_j^{p_1} y_1^{q_1} \cdots y_s^{q_s} \] (by Result 1.5.11 as \(y_m^{(m)}, t_m \in S \setminus U \) and where \(w^{(m)} = a_1^{(m)p_r-p_1} \cdots a_r^{(m)p_r-p_1} \))

\[u^{(m)} w_1^{(m)}(a_1^{(m)}, \ldots, a_r^{(m)}, a_2m, z_j, 1, \ldots, y_s) \]

(where \(u^{(m)} = x_1^{p_1} \cdots x_r^{p_r} y_m^{p_r-p_1} y_m^{p_r-a_2m-2} w(m) \))

\[u^{(m)} w_2^{(m)}(a_1^{(m)}, \ldots, a_r^{(m)}, a_2m, z_j, 1, \ldots, y_s) \] (by Corollary 4.2.2)

\[u^{(m)} a_1^{(m)p_1} \cdots a_r^{(m)p_r} z_1^{p_1} z_2^{p_2} \cdots z_t^{p_t} y_1^{q_1} \cdots y_s^{q_s} \]

(by the zigzag equations and Result 1.5.11)

\[u^{(m)} a_1^{(m)p_1} \cdots a_r^{(m)p_r} z_1^{p_1} z_2^{p_2} \cdots z_t^{p_t} y_1^{q_1} \cdots y_s^{q_s} \]

(by Results 1.5.10 and 1.5.11 for some \(c_1^{(m)}, \ldots, c_r^{(m)} \in U \) and \(t_m^{(m)} \in S \setminus U \) as \(y_m \) and \(t_m \in S \setminus U \))

\[e^{(m)} = c_1^{(m)p_r-q_1} \cdots c_r^{(m)p_r-q_1} \]

(by Result 1.5.11 as \(y_m^{(m)}, t_m^{(m)} \in S \setminus U \) and where \(e^{(m)} = c_1^{(m)p_r-q_1} \cdots c_r^{(m)p_r-q_1} \))

\[u^{(m)} a_1^{(m)p_1} \cdots a_r^{(m)p_r} z_1^{p_1} z_2^{p_2} \cdots z_t^{p_t} y_1^{q_1} \cdots y_s^{q_s} \]

(where \(u^{(m)} = e^{(m)} t_m^{(m)} y_1^{q_1} \cdots y_s^{q_s} \))

\[u^{(m)} u_2^{(m)}(a_1^{(m)}, \ldots, a_r^{(m)}, z_1, \ldots, z_t, a_2m-1, c_1^{(m)}, \ldots, c_r^{(m)}) y^{(m)} \]

\[u^{(m)} u_1^{(m)}(a_1^{(m)}, \ldots, a_r^{(m)}, z_1, \ldots, z_t, a_2m-1, c_1^{(m)}, \ldots, c_r^{(m)}) y^{(m)} \] (by Corollary 4.2.2).

Now the word \(w_j^{(m)}(\xi_1, \cdots, \xi_r, z_1, \cdots, z_t, \xi_1', \cdots, \xi_r') \) begins with \(\xi_1^{p_1} \cdots \xi_r^{p_r} z_j^{p_1} \), which equals \(\xi_1^{p_1} \cdots \xi_r^{p_r} z_j^{p_1} \). So, the above product in \(S \) contains \(y_m^{p_r-p_1} y_m^{p_r-a_2m-1} \). Thus, using Result 1.5.11 and the fact that \(y_m a_2m = y_m a_2m-2 \) from the zigzag equations,
we have,
\[x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{q_1} \cdots z_{j_s}^{q_s} \]
\[= u^{(m)} u_1^{(m)}(a_1^{(m)}, \ldots, a_r^{(m)}, z_1, \ldots, z_{l-1}, a_{2m-1}, c_1^{(m)}, \ldots, c_s^{(m)}) u^{(m)} \]
\[= u^{(m-1)} u_1^{(m-1)}(a_1^{(m-1)}, \ldots, a_r^{(m-1)}, z_1, \ldots, z_{l-1}, a_{2m-1}, c_1^{(m)}, \ldots, c_s^{(m)}) u^{(m)} \]

(Where \(u^{(m-1)} = x_1^{p_1} \cdots x_r^{p_r} y_{m-1}^{p_r} y_{m-1}^{q_1} \cdots y_{m-1}^{q_s} a_1^{(m-1)} a_2^{(m-1)} \cdots a_{m-1}^{(m-1)} \).

And by Results 1.5.10 and 1.5.11 for some \(a_1^{(m-1)}, \ldots, a_r^{(m-1)} \in U \) and \(y_{m-1}^{(m-1)} \in S \setminus U \) as \(y_{m-1}^{(m-1)} \in S \setminus U \) and \(t_m^{(m)} \in S \setminus U \)

\[= u^{(m-1)} u_2^{(m-1)}(a_1^{(m-1)}, \ldots, a_r^{(m-1)}, z_1, \ldots, z_{l-1}, a_{2m-2}, c_1^{(m)}, \ldots, c_s^{(m)}) u^{(m)} \]

(by Corollary 4.2.2)

\[= x_1^{p_1} \cdots x_r^{p_r} y_m^{p_r} y_m^{p_r} \cdots y_m^{p_r} a_1^{(m)} a_2^{(m)} \cdots a_{m-2}^{(m)} c_1^{(m)} \cdots c_s^{(m)} e^{(m)} t_m^{(m)} y_1^{q_1} \cdots y_s^{q_s} \]

(by definitions of \(u^{(m)} \) and \(u^{(m)} \))

\[= x_1^{p_1} \cdots x_r^{p_r} y_m^{p_r} y_m^{p_r} \cdots y_m^{p_r} a_1^{(m)} a_2^{(m)} \cdots a_{m-2}^{(m)} c_1^{(m)} \cdots c_s^{(m)} t_m^{(m)} y_1^{q_1} \cdots y_s^{q_s} \]

(by definition of \(e^{(m)} \))

\[= x_1^{p_1} \cdots x_r^{p_r} y_m^{p_r} y_m^{p_r} \cdots y_m^{p_r} a_1^{(m)} a_2^{(m)} \cdots a_{m-2}^{(m)} y_1^{q_1} \cdots y_s^{q_s} \]

(by Result 1.5.11 as \(t_m^{(m)} = c_1^{(m)} \cdots c_s^{(m)} t_m^{(m)} \))

\[= x_1^{p_1} \cdots x_r^{p_r} y_m^{p_r} y_m^{p_r} \cdots y_m^{p_r} a_1^{(m)} a_2^{(m)} y_1^{q_1} \cdots y_s^{q_s} \]

where the last equality follows by Result 1.5.11 and the zigzag equations.

Continuing this way and letting \(y = y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s} \), we obtain

\[x_1^{p_1} \cdots x_r^{p_r} y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s} \]

\[= x_1^{p_1} \cdots x_r^{p_r} y_m^{p_r} y_m^{p_r} \cdots y_m^{p_r} y_1^{q_1} \cdots y_s^{q_s} \]

\[: \]

\[= x_1^{p_1} \cdots x_r^{p_r} y_1^{q_1} y_1^{q_1} y_1^{q_1} \cdots y_1^{q_1} t_1^{(1)} \]

(by Results 1.5.10 and 1.5.11 for some \(a_1^{(1)}, \ldots, a_r^{(1)} \in U \) and \(y_1^{(1)} \in S \setminus U \) as \(y_1, t_1 \in S \setminus U \))

\[= x_1^{p_1} \cdots x_r^{p_r} y_1^{q_1} y_1^{q_1} w_1^{(1)} a_1^{(1)} a_2^{(1)} y_1^{q_1} \cdots y_1^{q_1} a_1^{(1)} t_1^{(1)} \]

(by Result 1.5.11 as \(y_1^{(1)} \), \(t_1 \in S \setminus U \) and where \(w_1^{(1)} = a_1^{(1)} a_2^{(1)} \cdots a_r^{(1)} \)).
\[u^{(1)} a_1^{(p_1)} \ldots a_r^{(p_r)} z_1^{(p_1)} \ldots z_{\ell-1}^{(p_1)} a_1^{(q_1)} \ldots c_s^{(q_s)} t_1^{(p_1)} y \]

(where \(u^{(1)} = x^{(p_1)}_1 \ldots x^{(p_r)}_r y_1^{(p_r)} y_1^{(1)} \))

\[= u^{(1)} a_1^{(p_1)} \ldots a_r^{(p_r)} z_1^{(p_1)} \ldots z_{\ell-1}^{(p_1)} a_1^{(q_1)} \ldots c_s^{(q_s)} t_1^{(p_1)} y \]

(by Results 1.5.10 and 1.5.11 for some \(c_1^{(1)}, \ldots, c_s^{(1)} \in U \) and \(t_1^{(1)} \in S \backslash U \) as \(y_1^{(1)} \) and \(t_1 \in S \backslash U \))

\[= u^{(1)} a_1^{(p_1)} \ldots a_r^{(p_r)} z_1^{(p_1)} \ldots z_{\ell-1}^{(p_1)} a_1^{(q_1)} \ldots c_s^{(q_s)} e^{(1)} t_1^{(p_1)} y \]

(by Result 1.5.11 as \(y_1^{(1)}, t_1^{(1)} \in S \backslash U \) and where \(e^{(1)} = c_1^{(p_1-q_1)} \ldots c_s^{(p_1-q_s)} \))

\[= u^{(1)} u_2(a_1^{(1)}, \ldots, a_r^{(1)}, z_1, \ldots, z_{\ell-1}, a_1^{(1)}, \ldots, c_s^{(1)}) v^{(1)} \]

(where \(v^{(1)} = e^{(1)} t_1^{(p_1)} y \))

\[= u^{(1)} u_1(a_1^{(1)}, \ldots, a_r^{(1)}, z_1, \ldots, z_{\ell-1}, a_1^{(1)}, \ldots, c_s^{(1)}) v^{(1)} \]

(by Corollary 4.2.2.)

As before, the above product in \(S \) contains the subword \(y_1^{(p_1-q_1)} y_1^{(p_1)} a_1^{(p_1)} \). Thus, using Result 1.5.11 and the fact that \(y_1 a_1 = a_0 \) from the zigzag equations, we have

\[= u^{(1)} u_1(a_1^{(1)}, \ldots, a_r^{(1)}, z_1, \ldots, z_{\ell-1}, a_1^{(1)}, \ldots, c_s^{(1)}) v^{(1)} \]

\[= u_1(x_1, \ldots, x_r, z_1, \ldots, z_{\ell-1}, a_0, c_1^{(1)}, \ldots, c_s^{(1)}) v^{(1)} \]

(by Corollary 4.2.2)

\[= x_1^{p_1} x_2^{p_2} \ldots x_r^{p_r} z_1^{p_1} z_2^{p_2} \ldots z_{\ell-1}^{p_1} a_0^{p_1} c_1^{(1)} \ldots c_s^{(1)} e^{(1)} t_1^{(p_1)} y \]

(by definition of \(v^{(1)} \))

\[= x_1^{p_1} x_2^{p_2} \ldots x_r^{p_r} z_1^{p_1} z_2^{p_2} \ldots z_{\ell-1}^{p_1} a_0^{p_1} c_1^{(1)} \ldots c_s^{(1)} t_1^{(p_1)} y \]

(by definition of \(e^{(1)} \))

\[= x_1^{p_1} x_2^{p_2} \ldots x_r^{p_r} z_1^{p_1} z_2^{p_2} \ldots z_{\ell-1}^{p_1} a_0^{p_1} y \]

(by Results 1.5.10 and 1.5.11 as \(c_1^{(1)} \ldots c_s^{(1)} t_1^{(p_1)} = t_1^{(1)} \))

\[= x_1^{p_1} \ldots x_r^{p_r} z_1^{p_1} z_2^{p_2} \ldots z_{\ell-1}^{p_1} y_1^{q_1} \ldots y_1^{q_s} \]

where the last equality follows by zigzag equations, Result 1.5.13; and as \(j_1 = \ell \) and \(y = y_1^{q_1} \ldots y_1^{q_s} \).

This is the end of the proof in case (iii) and, thus, of the base \(q = 2 \) of the induction.
Next, assume inductively that the result holds when \(x_1, \ldots, x_r, y_1, \ldots, y_s, z_{j_1}, \ldots, z_{j_{q-1}} \) are in \(S \) (\(q > 2 \)) and \(z_{j_q}, \ldots, z_{j_e} \in U \). From this assumption, we shall prove that the result also holds when \(x_1, \ldots, x_r, y_1, \ldots, y_s, z_{j_1}, \ldots, z_{j_{q-1}}, z_{j_q} \in S \) and \(z_{j_{q+1}}, \ldots, z_{j_e} \in U \). So take any \(x_1, \ldots, x_r, y_1, \ldots, y_s, z_{j_1}, \ldots, z_{j_{q-1}}, z_{j_q}, z_{j_{q+1}}, \ldots, z_{j_e} \in S \) and \(z_{j_{q+1}}, \ldots, z_{j_e} \in U \). Assume that \(z_{j_q} \in S \setminus U \). Let (2) be a zigzag of minimal length \(m \) over \(U \) with value \(z_{j_q} \). Put \(k = j_q \) and \(t = j_{q-1} \). As equalities (70) and (71) below hold by Result 1.5.15 as \(y_m \in S \setminus U \) and \(p_1 + \ldots + p_r + 1 \geq g_0 - 1 \), we have

Case (1). \(t = k - 1 \). Now

\[
\begin{align*}
& x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_j} \cdots z_{j_e}^{p_j} y_1^q \cdots y_s^q \\
& = x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_j} \cdots z_{j_{q-1}}^{p_j} y_m^{p_j} a_{2m}^{p_j} z_{j_{q+1}}^{p_j} \cdots z_{j_e}^{p_j} y_1^q \cdots y_s^q \\
& \quad \text{(by the zigzag equations and Result 1.5.13)} \\
& = x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_j} \cdots (z_{j_{q-1}}^{p_j} y_m^{p_j} a_{2m}^{p_j} z_{j_{q+1}}^{p_j} \cdots z_{j_e}^{p_j} y_1^q \cdots y_s^q) \\
& = w_1(x_1, \ldots, x_r, z_{j_1}, \ldots, z_{j_{q-2}}, z_{j_{q-1}} y_m, a_{2m}, z_{j_{q+1}}, \ldots, z_{j_e}, y_1, \ldots, y_s) \\
& = w_2(x_1, \ldots, x_r, z_{j_1}, \ldots, z_{j_{q-2}}, z_{j_{q-1}} y_m, a_{2m}, z_{j_{q+1}}, \ldots, z_{j_e}, y_1, \ldots, y_s) \\
& \quad \text{(by the inductive hypothesis)} \\
& = x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_j} \cdots z_{k-2}^{p_j} (z_{j_{q-1}}^{p_j} y_m^{p_j} a_{2m}^{p_j} z_{k}^{p_j} z_{k+1}^{p_j} \cdots z_{j_e}^{p_j} y_1^q \cdots y_s^q) \quad \text{(as \(t = k - 1 \))} \\
& = x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_j} \cdots z_{k-2}^{p_j} z_{j_{q-1}}^{p_j} y_m^{p_j} a_{2m}^{p_j} z_{k+1}^{p_j} \cdots z_{j_e}^{p_j} y_1^q \cdots y_s^q \\
& \quad \text{(by the zigzag equations and Result 1.5.13)} \\
& = x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_j} \cdots z_{k-2}^{p_j} z_{k-1}^{p_j} z_{k}^{p_j} z_{k+1}^{p_j} \cdots z_{j_e}^{p_j} y_1^q \cdots y_s^q \quad \text{(as \(j_{q-1} = k - 1 \))}
\end{align*}
\]

as required.

Case (2). \(t < k - 1 \) and \(k \leq \ell \). Now, as above, we have

\[
\begin{align*}
& x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_j} \cdots z_{j_e}^{p_j} y_1^q \cdots y_s^q \\
& = x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_j} \cdots z_{j_{q-1}}^{p_j} y_m^{p_j} a_{2m}^{p_j} z_{j_{q+1}}^{p_j} \cdots z_{j_e}^{p_j} y_1^q \cdots y_s^q \\
& \quad \text{(by the zigzag equations and Result 1.5.13)}
\end{align*}
\]
\[x_1^{p_1} \cdots x_r^{p_r} z_j^p \cdots (z_{m-1} y_m)^p a_{2m}^{p_2} z_{j+1}^{p_1} \cdots z_j^{p_1} y_1^{p_1} \cdots y_s^{p_1} \]

(by Result 1.5.15 as \(y_m \in S \setminus U \) and \(p_1 + \cdots + p_r + 1 \geq g_0 - 1 \))

\[= w_1(x_1, \ldots, x_r, z_j, \ldots, z_{j-k}, z_{j-k+1} y_m, a_{2m}, z_{j+1}, \ldots, z_j, y_1, \ldots, y_s) \]

\[= w_2(x_1, \ldots, x_r, z_j, \ldots, z_{j-k}, z_{j-k+1} y_m, a_{2m}, z_{j+1}, \ldots, z_j, y_1, \ldots, y_s) \]

(by the inductive hypothesis)

\[= x_1^{p_1} \cdots x_r^{p_r} z_j^p \cdots (z_{j-k} y_m)^p z_{t+1}^p \cdots z_{t-k}^p a_{2m}^p z_{k+1}^p \cdots z_{t}^p y_1^{p_1} \cdots y_s^{p_1} \]

(72)

where the last equality holds by the zigzag equations and Result 1.5.13, and the equality (72) above follows by Result 1.5.15 as \(p_1 + \cdots + p_r + 1 \geq g_0 - 1 \) and \(a_{2m} = a_{2m-1} t_m \) with \(t_m \in S \setminus U \), as required.

Case (3). \(k + 1 = t \). As the equality (73) below holds by the inductive hypothesis, and equalities (74) and (75) below follow by the zigzag equations and by Result 1.5.15 as \(y_m \in S \setminus U \) and \(p_1 + \cdots + p_r + 1 \geq g_0 - 1 \) respectively, we have

\[x_1^{p_1} \cdots x_r^{p_r} z_j^p \cdots z_j^{p_1} y_1 \cdots y_s^{p_1} \]

\[= x_1^{p_1} \cdots x_r^{p_r} z_j^p \cdots (z_{j-k} y_m)^p a_{2m}^p z_{j+1}^p \cdots z_j^{p_1} y_1^{p_1} \cdots y_s^{p_1} \]

(by the zigzag equations and Result 1.5.13)

\[= x_1^{p_1} \cdots x_r^{p_r} z_j^p \cdots (z_{j-k} y_m)^p a_{2m}^p z_{j+1}^p \cdots z_j^{p_1} y_1^{p_1} \cdots y_s^{p_1} \]

(by Result 1.5.15 as \(y_m \in S \setminus U \) and \(p_1 + \cdots + p_r + 1 \geq g_0 - 1 \))

\[= w_1(x_1, \ldots, x_r, z_j, \ldots, z_{j-k+1}, z_{j+1} y_m, a_{2m}, z_{j+1}, \ldots, z_j, y_1, \ldots, y_s) \]

\[= w_2(x_1, \ldots, x_r, z_j, \ldots, z_{j-k+1}, z_{j+1} y_m, a_{2m}, z_{j+1}, \ldots, z_j, y_1, \ldots, y_s) \]

(73)

\[= w_2(x_1, \ldots, x_r, z_j, \ldots, z_{j-k+1}, z_{j+1} y_m, a_{2m-1} t_m, z_{j+1}, \ldots, z_j, y_1, \ldots, y_s) \]

(74)

\[= x_1^{p_1} \cdots x_r^{p_r} z_j^p \cdots z_{k-1}^p (a_{2m-1} t_m)^p (z_{j-k} y_m)^p z_{t+1}^p \cdots z_{t-k}^p y_1^p \cdots y_s^p \]

\[= x_1^{p_1} \cdots x_r^{p_r} z_j^p \cdots z_{k-1}^p (a_{2m-1} t_m)^p (z_{j-k} y_m)^p z_{t+1}^p \cdots z_{t-k}^p y_1^p \cdots y_s^p \]

(75)
\[u_2(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, a_{2m-1}, t_m z_{j_t-1} y_m, z_{t+1}, \ldots, z_t, y_1, \ldots, y_s) \]

\[= u_1(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, a_{2m-1}, t_m z_{j_t-1} y_m, z_{t+1}, \ldots, z_t, y_1, \ldots, y_s), \]

where the last equality holds by the inductive hypothesis. Since \(z_{j_t-1} z_{j_q} \) is a subword of the word \(u_1(\xi_1, \ldots, \xi_r, z_1, \ldots, z_t, \xi_1', \ldots, \xi_s') \), the above product in \(S \) contains \((t_m z_{j_t-1} y_m)^p a_{2m-1}^p \). Thus, using dual of Result 1.5.15 as \(t_m \in S \setminus U \) and \(y_1^q \cdots y_s^q \in S^q \), and the fact that \(y_m a_{2m-1} = y_{m-1} a_{2m-2} \) from the zigzag equations, we have

\[\sum_{i=1}^{p_1} x_1^{p_1} \cdots x_r^{p_r} z_{j_{i-1}}^{p_i} \cdots z_j^{p_r} y_1^q \cdots y_s^q \]

\[= u_1(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, a_{2m-1}, t_m z_{j_t-1} y_m, z_{t+1}, \ldots, z_t, y_1, \ldots, y_s) \]

\[= u_1(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, a_{2m-2}, t_m z_{j_t-1} y_m, z_{t+1}, \ldots, z_t, y_1, \ldots, y_s) \]

\[= u_2(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, a_{2m-2}, t_m z_{j_t-1} y_m, z_{t+1}, \ldots, z_t, y_1, \ldots, y_s) \quad (76) \]

\[= x_1^{p_1} \cdots x_r^{p_r} z_{j_{i-1}}^{p_i} \cdots z_j^{p_r} (t_m z_{j_t-1} y_m)^p z_{t+1} \cdots z_t y_1^q \cdots y_s^q \]

\[= x_1^{p_1} \cdots x_r^{p_r} z_{j_{i-1}}^{p_i} \cdots z_j^{p_r} (t_m z_{j_t-1} y_m)^p z_{t+1} \cdots z_t y_1^q \cdots y_s^q, \]

where the last equality and the equality (76) above follow by Result 1.5.15, as \(y_{m-1} \in S \setminus U \) and \(p_1 + \ldots + p_r + 1 \geq g_0 - 1 \), and the inductive hypothesis respectively.

As equalities (77) and (78) below follow by zigzag equations and Result 1.5.15, as \(y_{m-1} \in S \setminus U \) and \(p_1 + \ldots + p_r + 1 \geq g_0 - 1 \), we have

\[x_1^{p_1} \cdots x_r^{p_r} z_{j_{i-1}}^{p_i} \cdots z_j^{p_r} y_1^q \cdots y_s^q \]

\[= x_1^{p_1} \cdots x_r^{p_r} z_{j_{i-1}}^{p_i} \cdots z_j^{p_r} (t_m z_{j_t-1} y_m)^p z_{t+1} \cdots z_t y_1^q \cdots y_s^q \]

\[= x_1^{p_1} \cdots x_r^{p_r} z_{j_{i-1}}^{p_i} \cdots z_j^{p_r} (t_{m-1} z_{j_t-1} y_m)^p z_{t+1} \cdots z_t y_1^q \cdots y_s^q \quad (77) \]

\[= x_1^{p_1} \cdots x_r^{p_r} z_{j_{i-1}}^{p_i} \cdots z_j^{p_r} (t_{m-1} z_{j_t-1} y_m)^p z_{t+1} \cdots z_t y_1^q \cdots y_s^q. \quad (78) \]

Thus, continuing this way, we obtain

\[x_1^{p_1} \cdots x_r^{p_r} z_{j_{i-1}}^{p_i} \cdots z_j^{p_r} y_1^q \cdots y_s^q \]

\[= x_1^{p_1} \cdots x_r^{p_r} z_{j_{i-1}}^{p_i} \cdots z_j^{p_r} (t_{m-1} z_{j_t-1} y_m)^p z_{t+1} \cdots z_t y_1^q \cdots y_s^q. \]

84
As before, the word \(u_1(\xi_1, \ldots, \xi_r, z_1, \ldots, z_t, \xi'_1, \ldots, \xi'_s) \) contains \(z_{j_{q-1}} z_j \) as a subword, so the above product in \(S \) contains \((t_1 z_{j_{q-1}} y_1)^p a_1^p \). Thus, using Result 1.5.15 and the fact that \(y_t a_t = a_0 \) from the zigzag equations, we have

\[
x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{j_{q-1}}^{p_1} y_1^{q_1} \cdots y_s^{q_s}
\]

\[
= u_1(x_1, \ldots, x_r, z_1, \ldots, z_t, a_0, t_1 z_{j_{q-1}} y_1, z_{t+1}, \ldots, z_t, y_1, \ldots, y_s)
\]

\[
= u_1(x_1, \ldots, x_r, z_1, \ldots, z_{t+1}, a_0, t_1 z_{j_{q-1}}, z_{t+1}, \ldots, z_t, y_1, \ldots, y_s)
\]

\[
= u_2(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, a_0, t_1 z_{j_{q-1}}, z_{t+1}, \ldots, z_t, y_1, \ldots, y_s)
\]

(by the inductive hypothesis)

\[
= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} y_1^{q_1} \cdots y_s^{q_s}
\]

\[
= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} y_1^{q_1} \cdots y_s^{q_s}
\]

(by Result 1.5.15 as \(t_1 \in S \setminus U \) and \(p_1 + \cdots + p_r + 1 \geq g_0 - 1 \))

\[
= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} z_{j_{q-1}}^{p_1} z_{t+1}^{p_1} \cdots y_1^{q_1} \cdots y_s^{q_s}
\]

(by Result 1.5.13 and the zigzag equations)

\[
= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} z_{j_{q-1}}^{p_1} z_{t+1}^{p_1} \cdots z_1^{p_1} \cdots y_s^{q_s}
\]

as required.

Case (4). \(k + 1 < t \) and \(t < \ell \). As the equality (79) below follows by Result 1.5.15 because \(y_m \in S \setminus U \) and \(p_1 + \cdots + p_r + 1 \geq g_0 - 1 \), we have

\[
x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_1} \cdots z_{j_{q-1}}^{p_1} y_1^{q_1} \cdots y_s^{q_s}
\]

\[
= x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_1} \cdots z_{j_{q-1}}^{p_1} y_m \cdots y_1^{q_1} \cdots y_s^{q_s}
\]

(by the zigzag equations and Result 1.5.13)

\[
= x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_1} \cdots z_{j_{q-1}}^{p_1} (z_{j_{q-1}} y_m)^p a_{2m}^{p} z_{j_{q+1}}^{p_1} \cdots y_1^{q_1} \cdots y_s^{q_s}
\]

(79)
\[w_1(x_1, \ldots, x_r, z_{j_1}, \ldots, z_{j_{q-1}}, z_{j_{q-1}}, y_1, \ldots, y_s) \]
\[= w_2(x_1, \ldots, x_r, z_{j_1}, \ldots, z_{j_{q-1}}, z_{j_{q-1}}, y_1, \ldots, y_s) \]
(by the inductive hypothesis)
\[= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} z_{k+1}^{p_1} \cdots z_{t-1}^{p_1}(z_{j_{q-1}}, y_{m})^{p_1} z_{t+1}^{p_1} \cdots z_{s}^{p_1} y_1^{q_1} \cdots y_s^{q_s} \]
where the last equality holds by the zigzag equations and Result 1.5.15 as \(t_m \) is in \(S \setminus U \) and \(p_1 + \cdots + p_r + 1 \geq g_0 - 1 \). As the equality (80) below holds by Results 1.5.10 and 1.5.15 for some \(b_{k+1}^{(m)}, \ldots, b_{k+(t-k)}^{(m)} \in U \) and \(t_m^{(m)} \in S \setminus U \), as \(t_m \in S \setminus U \) and letting \(z = z_{t+1}^{p_1} \cdots z_{t}^{p_1} y_1^{q_1} \cdots y_s^{q_s} \) and \(w_i^{(k)} = t_i^{(k)} z_{k+1} \cdots z_{t-1}(z_{j_{q-1}}, y_k) \) where \(i, k \in \{1, 2, \ldots, m\} \), we have
\[x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} z_{k+1}^{p_1} \cdots z_{t-1}^{p_1}(z_{j_{q-1}}, y_{m})^{p_1} z \]
\[= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} z_{k+1}^{p_1} \cdots z_{t-1}^{p_1}(z_{j_{q-1}}, y_{m})^{p_1} z \]
\[= u_2(x_1, \ldots, x_r, z_1, \ldots, a_{2m-1}, b_{k+1}^{(m)}, \ldots, b_{k+(t-k)}^{(m)}, w_m^{(m)}, \ldots, z_{t}, y_1, \ldots, y_s) \]
\[= u_1(x_1, \ldots, x_r, z_1, \ldots, a_{2m-1}, b_{k+1}^{(m)}, \ldots, b_{k+(t-k)}^{(m)}, w_m^{(m)}, \ldots, z_{t}, y_1, \ldots, y_s), \]
where the last equality holds by the inductive hypothesis and the equality (81) holds by Result 1.5.15, as \(y_{m} \in S \setminus U \) and \(p_1 + \cdots + p_r + 1 \geq g_0 - 1 \). Also equalities (82), (83) and (84) follow respectively by the inductive hypothesis, by Result 1.5.15 as \(y_{m-1} \in S \setminus U \) and \(p_1 + \cdots + p_r + 1 \geq g_0 - 1 \), and by Results 1.5.10 and 1.5.15 as \(b_{k}^{(m) p} \cdots b_{k+(t-k)}^{(m) p} = t_m^{p} \). Since the word \(u_1(\xi_1, \ldots, \xi_r, z_1, \ldots, z_\ell, \xi'_{1}, \ldots, \xi'_{s}) \) contains \(z_{j_{q-1}}, z_{j_{q-1}} \) as a subword, \((t_m^{(m)} \cdots z_{t-1}(z_{j_{q-1}}, y_{m}))^{p} a_{2m-1}^{(m)} \) is contained in the above product in \(S \). Thus, using Result 1.5.15 and the fact that \(y_m a_{2m-1} = y_{m-1} a_{2m-2} \) from the zigzag equations, we have
\[x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{j_{1}}^{p_1} z_{j_{1}}^{p_1} \cdots z_{j_{s}}^{p_1} y_1^{q_1} \cdots y_s^{q_s} \]
\[= u_1(x_1, \ldots, x_r, z_1, \ldots, a_{2m-1}, b_{k+1}^{(m)}, \ldots, b_{k+(t-k)}^{(m)}, w_m^{(m)}, \ldots, z_{t}, y_1, \ldots, y_s) \]
\[u_1(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, w_{m-1}, \ldots, z_t, y_1, \ldots, y_s) \]
\[= u_2(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, w_{m-1}, \ldots, z_t, y_1, \ldots, y_s) \quad \text{(82)} \]
\[x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{r-1}^{p_1} \cdots z_{k-1}^{p_1} \cdots z_{k+(t-k-1)}^{p_1} w_{m-1}^{(m-1)p} \cdots z_t^{p} y \]
\[(\text{where } y = y_1 \cdots y_s)\]
\[= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} \cdots z_{k+(t-k-1)}^{p_1} \cdots z_{t-1}^{p_1} (z_{j_1}, y_{m-1}) \cdots z_t^{p} y \quad \text{(83)} \]
\[(\text{by definition of } w_{m-1}^{(m-1)p}) \]
\[= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} \cdots z_{k+(t-k-1)}^{p_1} \cdots z_{t-1}^{p_1} (z_{j_1}, y_{m-1}) \cdots z_t^{p} y \quad \text{(84)} \]
where the last equality holds by the zigzag equations and Result 1.5.15.

Continuing this way, we obtain

\[x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{r-1}^{p_1} \cdots z_{k-1}^{p_1} \cdots z_{k+(t-k-1)}^{p_1} \cdots z_{t-1}^{p_1} (z_{j_1}, y_{m-1}) \cdots z_t^{p} y \]
\[\cdots \]
\[= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} \cdots z_{k+(t-k-1)}^{p_1} \cdots z_{t-1}^{p_1} (z_{j_1}, y_{m-1}) \cdots z_t^{p} y \]
\[= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} \cdots z_{k+(t-k-1)}^{p_1} \cdots z_{t-1}^{p_1} (z_{j_1}, y_{m-1}) \cdots z_t^{p} y \quad \text{(85)} \]
\[= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} \cdots z_{k+(t-k-1)}^{p_1} (w_1^{(1)p}) \cdots z_t^{p} y, \]
where the last equality follows by Result 1.5.15 as \(y_1 \in S \setminus U \) and \(p_1 + \ldots + p_r + 1 \geq g_0 - 1 \) and the equality (85) above follows by Results 1.5.10 and 1.5.15 for some \(b_{k+1}^{(1)}, \ldots, b_{k+(t-k-1)}^{(1)} \) in \(U \) and \(t_1^{(1)} \in S \setminus U \), as \(t_1 \in S \setminus U \) and \(p_1 + \ldots + p_r + 1 \geq g_0 - 1 \).

Therefore,

\[x_1^{p_1} \cdots x_r^{p_r} z_{j_1}^{p_1} \cdots z_{j_t}^{p_1} \cdots z_{t-1}^{p_1} (w_1^{(1)p}) \cdots z_t^{p} y \]
\[\cdots \]
\[= x_1^{p_1} \cdots x_r^{p_r} z_1^{p_1} \cdots z_{k-1}^{p_1} \cdots z_{k+(t-k-1)}^{p_1} (w_1^{(1)p}) \cdots z_t^{p} y \]
\[= u_2(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, a_1, b_{k+1}^{(1)}, \ldots, b_{k+(t-k-1)}^{(1)}; w_1^{(1)}, \ldots, z_t, y_1, \ldots, y_s) \]
\[(\text{by definition of } y)\]
\[= u_1(x_1, \ldots, x_r, z_1, \ldots, z_{k-1}, a_1, b_{k+1}^{(1)}, \ldots, b_{k+(t-k-1)}^{(1)}; w_1^{(1)}, \ldots, z_t, y_1, \ldots, y_s), \]
87
where the last equality holds by the inductive hypothesis, and the equality (86) below holds by the inductive hypothesis and Result 1.5.15 as, $t_{1}^{(1)} \in S \setminus U$ and $q_{1} + \cdots + q_{s} + 1 \geq h_{0} - 1$ respectively. Also equalities (87), (88) and (89) below follow respectively by the inductive hypothesis, Corollary 1.5.12 as, $t_{1}^{(1)} \in S \setminus U$ and $q_{1} + \cdots + q_{s} + 1 \geq h_{0} - 1$; and as $t_{1}^{(1)} \in S \setminus U$ and $y_{k+1}^{(1)} = y_{k+1}^{(1)} c_{k+1}'$ with $y_{k+1}^{(1)} \in S \setminus U$ and $c_{k+1}' \in U$, and by the zigzag equations and Result 1.5.13 respectively. As before, the word $u_{1}(\xi_{1}, \ldots, \xi_{r}, z_{1}, \ldots, z_{t}, \xi_{1}', \ldots, \xi_{s}')$ contains $z_{j_{k-1}} z_{j_{k}}$ as a subword, the above product in S contains $(z_{j_{k-1}}, y_{1})^{p} a_{1}^{p}$. Thus, using Result 1.5.15 as $t_{1}^{(1)} \in S \setminus U$ and $q_{1} + \cdots + q_{s} + 1 \geq h_{0} - 1$ and the fact that $y_{a_{1}} = a_{0}$ from the zigzag equations, we have

\[
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} z_{j_{1}}^{p_{1}} z_{j_{2}}^{p_{2}} \cdots z_{j_{s}}^{p_{s}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
\]

\[
= u_{1}(x_{1}, \ldots, x_{r}, z_{1}, \ldots, z_{k-1}, a_{1}, b_{k+1}^{(1)}, \ldots, b_{k+(t-k-1)}^{(1)}, u_{1}^{(1)}, \ldots, z_{t}, y_{1}, \ldots, y_{s})
\]

\[
= u_{1}(x_{1}, \ldots, x_{r}, z_{1}, \ldots, z_{k-1}, a_{0}, c_{k+1}^{(1)}, \ldots, b_{k+(t-k-1)}^{(1)}, f, \ldots, z_{t}, y_{1}, \ldots, y_{s})
\]

(by definition of $u_{1}^{(1)}$ and where $f = t_{1}^{(1)} z_{k+1} \cdots z_{k-1} z_{j_{k-1}}$) (86)

\[
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} z_{j_{1}}^{p_{1}} \cdots z_{j_{s}}^{p_{s}} y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
\]

(by definition of f)

\[
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} z_{j_{1}}^{p_{1}} \cdots z_{j_{s}}^{p_{s}} a_{0}^{p_{1}^{(1)}} b_{k+1}^{(1)} \cdots b_{k+(t-k-1)}^{(1)} (t_{1}^{(1)} z_{k+1} \cdots z_{t-1} z_{j_{k-1}})^{p} \cdots z_{t}^{p_{t}} y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
\]

(87)

\[
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} z_{j_{1}}^{p_{1}} \cdots z_{j_{s}}^{p_{s}} a_{0}^{p_{1}^{(1)}} b_{k+1}^{(1)} \cdots b_{k+(t-k-1)}^{(1)} (t_{1}^{(1)} z_{k+1} \cdots z_{t-1} z_{j_{k-1}})^{p} \cdots z_{t}^{p_{t}} y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
\]

(88)

\[
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} z_{j_{1}}^{p_{1}} \cdots z_{j_{s}}^{p_{s}} a_{0}^{p_{1}^{(1)}} b_{k+1}^{(1)} \cdots b_{k+(t-k-1)}^{(1)} (t_{1}^{(1)} z_{k+1} \cdots z_{t-1} z_{j_{k-1}})^{p} \cdots z_{t}^{p_{t}} y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
\]

(89)

\[
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} z_{j_{1}}^{p_{1}} \cdots z_{j_{s}}^{p_{s}} a_{0}^{p_{1}^{(1)}} b_{k+1}^{(1)} \cdots b_{k+(t-k-1)}^{(1)} (t_{1}^{(1)} z_{k+1} \cdots z_{t-1} z_{j_{k-1}})^{p} \cdots z_{t}^{p_{t}} y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
\]

(89)

as required.

Case (5). $k + 1 < t$ and $t = \ell$.

The proof in this case may be obtained by modifying the proof of Case (4) in the following way:

Letting $a = x_{1}, \ldots, x_{r}$ and $b = y_{1}, \ldots, y_{s}$.
(a) Replace the word \(z_{t+1}^p \cdots z_{t}^p \) by 1;

(b) Replace
\[
(a, z_1, \ldots, z_{k-1}, a_{2c-1}, b_{k+1}, \ldots, b_{k+(t-k-1)}, t_{e}^{(c)} z_{k+1} \cdots z_{t-1}(z_{j_u-1}, y_c), z_{t+1}, \ldots, z_{t}, b)
\]
by
\[
(a, z_1, z_2, \ldots, z_{k-1}, a_{2c-1}, b_{k+1}, \ldots, b_{k+(t-k-1)}, t_{e}^{(c)} z_{k+1} \cdots z_{t-1}(z_{j_u-1}, y_c), b)
\]
for all \(c = 1, 2, \ldots, m; \)

(c) Replace
\[
(a, z_1, \ldots, z_{k-1}, a_{2c-2}, b_{k+1}, \ldots, b_{k+(t-k-1)}, t_{e}^{(c)} z_{k+1} \cdots z_{t-1}(z_{j_u-1}, y_c), z_{t}, b)
\]
by
\[
(a, z_1, z_2, \ldots, z_{k-1}, a_{2c-2}, b_{k+1}, \ldots, b_{k+(t-k-1)}, t_{e}^{(c)} z_{k+1} \cdots z_{t-1}(z_{j_u-1}, y_c), b)
\]
for all \(c = 1, 2, \ldots, m; \) and \(y_0 \) by 1 when \(c = 1. \)

Thus, the proof of the theorem is completed. \(\square \)

The following theorem extends the class of homotypical identities that are preserved under epis in conjunction with a seminormal identity.

Theorem 4.2.5: Let \(u \) and \(v \) be any words in the variables \(z_1, z_2, \ldots, z_{\ell} \) such that \(|z_i|_u = |z_i|_v\) for all \(i = 1, 2, \ldots, \ell. \) Then all semigroup identities of the form
\[
x_1^{p_1} \cdots x_{\ell}^{p_{\ell}} u(z_1, \ldots, z_{\ell}) y_1^{q_1} \cdots y_{\ell}^{q_{\ell}} = x_1^{p_1} \cdots x_{\ell}^{p_{\ell}} v(z_1, \ldots, z_{\ell}) y_1^{q_1} \cdots y_{\ell}^{q_{\ell}} (\ell \geq 3)
\]
(90)
are preserved under epis in conjunction with (1).

Proof. Take any semigroups \(U \) and \(S \) with \(U \) as a subsemigroup of \(S \) such that \(U \) is dense in \(S. \) Let \(U \) satisfy (1) and (90). As \(U \) satisfies (1), by Result 1.5.5, \(S \) also satisfies (1). Now we shall prove that the identity (90) satisfied by \(U \) is also satisfied by \(S. \) Suppose that \(x_1, x_2, \ldots, x_{\ell}, y_1, y_2, \ldots, y_{\ell}, z_1, z_2, \ldots, z_{\ell} \in S. \) If all of \(z_1, z_2, \ldots, z_{\ell} \) are in \(U, \) then, (90) is satisfied by Lemma 4.2.1. So we assume that not all of \(z_1, z_2, \ldots, z_{\ell} \) are from \(U. \) Suppose that \(z_j \in S \setminus U, \) for some \(j \in \{1, 2, \ldots, \ell\}. \)

By Result 1.5.1, \(z_j = x'b = x'b'y' \) for some \(x', y' \in S \setminus U \) and \(b, b' \in U \) with \(b = b'y'. \)
Now, as equalities (91) and (92) below hold respectively by Result 1.5.15 as \(y' \in S \setminus U \) and \(p_1 + \cdots + p_r \geq g_0 - 1 \), and by Result 1.5.15 as \(x' \in S \setminus U \), \(q_1 + \cdots + q_s \geq h_0 - 1 \) together with the fact that \(|z_i|_u = |z_i|_v \) for all \(i = 1, 2, \ldots, \ell \), we have

\[
x_1^{q_1} x_2^{q_2} \cdots x_r^{q_r} u(z_1, z_2, \ldots, z_r) y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s} = x_1^{q_1} x_2^{q_2} \cdots x_r^{q_r} (x')^j u(z_1, z_2, \ldots, z_{j-1}, b'y', z_{j+1}, \ldots, z_\ell) y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s},
\]

(91)

\[
x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} v(z_1, z_2, \ldots, z_{j-1}, b'y', z_{j+1}, \ldots, z_\ell) y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s} = x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} (x')^j v(z_1, z_2, \ldots, z_{j-1}, b'y', z_{j+1}, \ldots, z_\ell) y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s},
\]

(92)

\[
x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} v(z_1, z_2, \ldots, z_{j-1}, b'y', z_{j+1}, \ldots, z_\ell) y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s} = x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} v(z_1, z_2, \ldots, z_{j-1}, z_j, z_{j+1}, \ldots, z_\ell) y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s},
\]

(93)

where the equality (93) above follows by Result 1.5.15 as \(y' \in S \setminus U \) and \(p_1 + \cdots + p_r \geq g_0 - 1 \), as required.

Corollary 4.2.6: Let (1) be any seminormal identity. Then all semigroup identities of the form

\[
x_1^{p_1} \cdots x_r^{p_r} z_1^{t_1} \cdots z_\ell^{t_\ell} y_1^{q_1} \cdots y_s^{q_s} = x_1^{p_1} \cdots x_r^{p_r} z_1^{t_1} \cdots z_\ell^{t_\ell} y_1^{q_1} \cdots y_s^{q_s}
\]

\((\ell \geq 3) \),

where \(j \) is any permutation of the set \(\{1, 2, \ldots, \ell\} \) and \(t_1, t_2, \ldots, t_\ell \geq 1 \), are preserved under epis in conjunction with (1).

§ 4.3. NON-BALANCED IDENTITIES

A homotypical identity \(u = v \) is said to be non-balanced if \(|x|_u \neq |x|_v \), for some \(x \in C(u) (= C(v)) \). In this section, we establish some sufficient conditions for non-balanced identities to be preserved under epis in conjunction with a seminormal identity.

Theorem 4.3.1: All semigroup identities of the form

\[
x_1^{p_1} \cdots x_r^{p_r} u(z_1, \ldots, z_\ell) y_1^{q_1} \cdots y_s^{q_s} = x_1^{p_1} \cdots x_r^{p_r} v(z_1, \ldots, z_\ell) y_1^{q_1} \cdots y_s^{q_s} \quad (\ell \geq 3),
\]

(94)

where \(u \) and \(v \) be any words in the variables \(z_1, z_2, \ldots, z_\ell \) such that \(\min \{|z_i|_u, |z_i|_v\} \geq \min \{p_r, q_i\} \) for all \(i \) in \(\{1, 2, \ldots, \ell\} \), are preserved under epis in conjunction with a
seminormal identity.

The following lemmas, where \(U \) and \(S \) be any semigroups such that \(U \) is dense in \(S \), will be required to complete the proof of Theorem 4.3.1; bracketed clauses yield the dual statements.

In the following, \(S^1 \) will denote the semigroup obtained from the semigroup \(S \) by adjoining an identity, if necessary; while the length of a word \(u \), denoted by \(\ell(u) \), is defined as the sum of the occurrences of all the variables appearing in \(u \).

Lemma 4.3.2([37, Lemma 2.7.1]): Let (1) be any seminormal identity, and let \(u, v \) and \(w \) be any words in the variables \(x_1, x_2, \ldots, x_k \) \((k \geq 2)\) such that \(\ell(u) \geq g_0 - 1 \) and \(\ell(v) \geq h_0 - 1 \). Take any \(a_1, a_2, \ldots, a_k \in U \) and \(t_1, t_2, \ldots, t_k \in S^1 \). If for each \(i \) such that \(t_i \in S \), \(a_i = y_i b_i \) \([a_i = b_i y_i]\) for some \(y_i \in S \setminus U \) and \(b_i \in S \) \((i = 1, 2, \ldots, k)\), then for any choice \(d_1, d_2, \ldots, d_k \) for the variables \(x_1, x_2, \ldots, x_k \) in \(S^1 \) respectively

\[
u(\tilde{d}) w(a_1 t_1, a_2 t_2, \ldots, a_k t_k)v(\tilde{d}) = u(\tilde{d}) w(a_1, a_2, \ldots, a_k)w(t_1, t_2, \ldots, t_k)v(\tilde{d})
\]

\[
[u(\tilde{d}) w(t_1 a_1, t_2 a_2, \ldots, t_k a_k)v(\tilde{d}) = u(\tilde{d}) w(t_1, t_2, \ldots, t_k)w(a_1, a_2, \ldots, a_k)v(\tilde{d})],
\]

where \(\tilde{d} = (d_1, d_2, \ldots, d_k) \).

Lemma 4.3.3([37, Lemma 2.7.2]): Let (1) be any seminormal identity and let \(u, v, w \) and \(w' \) be any words in the variables \(x_1, x_2, \ldots, x_k \) such that \(\ell(w) \geq g_0 - 1 \), \(\ell(w') \geq h_0 - 1 \). Take any \(d_1, d_2, \ldots, d_k \) in \(S \) for the variables \(x_1, x_2, \ldots, x_k \) respectively. Let \(x_j \in C(v) \) \([x_j \in C(u)]\) be such that \(d_j \in S \setminus U \) for some \(1 \leq j \leq k \). Then

\[
w(\tilde{d}) u(\tilde{d}) v(\tilde{d}) w'(\tilde{d}) = w(\tilde{d}) v(\tilde{d}) u(\tilde{d}) w'(\tilde{d}),
\]

where \(\tilde{d} = (d_1, d_2, \ldots, d_k) \).

Lemma 4.3.4([37, Lemma 2.7.3]): Let (1) be any seminormal identity and let \(u, v \) and \(w \) be any words in the variables \(x_1, x_2, \ldots, x_k \) \((k \geq 2)\) such that \(\ell(u) \geq g_0 - 1 \) and \(\ell(w) \geq h_0 - 1 \). Take any \(d_1, d_2, \ldots, d_k \) in \(S \) for the variables \(x_1, x_2, \ldots, x_k \) respectively. If \(x_j \in C(v) \), for some \(1 \leq j \leq k \), be such that \(d_j \in S \setminus U \), then

\[
u(\tilde{d}) w(\tilde{d}) = u(\tilde{d}) (d_j)^{|x_j|} v(\tilde{d}) w(\tilde{d})
\]

91
in S^1 (in fact the two products are equal in S), where $\vec{d} = (d_1, d_2, \ldots, d_k)$ and $\vec{d'} = (d_1, d_2, \ldots, d_{j-1}, 1, d_{j+1}, \ldots, d_k)$, for all $d_1, d_2, \ldots, d_k \in S$ (thus the product $v(\vec{d'})$ is obtained from the product $v(\vec{d})$ by omitting all the occurrences of the element d_j).

Proof of Theorem 4.3.1. Take any semigroups U and S with U dense in S, and assume that U satisfies (1) and (94). As U satisfies (1), by Result 1.5.5, S also satisfies (1). Now, we show that the identity (94) is also satisfied by S.

We shall prove the theorem in the case when $p_i \geq q_1$, so $|z_i|^u \geq q_1$ and $|z_i|^v \geq q_1$ hold for all i; the proof when $q_1 \geq p_i$ follows by dual arguments on similar lines.

So, take any $d_1, d_2, \ldots, d_l \in S$. If some $d_i \in U$, there is a zigzag in S^1 over U with value d_i, namely, $d_i = d_i \cdot 1 = 1 \cdot d_i = 1 \cdot d_i$. And if $d_i \in S \setminus U$, then there is a zigzag over U in S, hence in S^1. Thus d_1, d_2, \ldots, d_l all have zigzags over U in S^1 of some common length [33, Lemma 4.2], say

\[
\begin{align*}
 d_i &= a_0(i)^i t_1^{(i)}, & a_0(i)^i &= y_1^{(i)} a_1^{(i)}; \\
 y_k^{(i)} a_{2k}^{(i)} &= y_{k+1}^{(i)} a_{2k+1}^{(i)}, & a_{2k-1}^{(i)} t_k^{(i)} &= a_{2k}^{(i)} t_{k+1}^{(i)} & (1 \leq i \leq \ell, 1 \leq k \leq m - 1); \\
 d_{2m-1}^{(i)} t_m^{(i)} &= d_m^{(i)}, & y_m^{(i)} a_{2m}^{(i)} &= d_i;
\end{align*}
\]

where $a_j^{(i)} \in U$ ($i = 1, 2, \ldots, \ell; j = 0, 1, \ldots, 2m$) and $t_q^{(i)}, y_q^{(i)} \in S^1$ for $i = 1, 2, \ldots, \ell$ and $q = 1, 2, \ldots, m$. Further, for each $d_i \in S \setminus U$, we may assume that $t_q^{(i)}$ and $y_q^{(i)}$ are in $S \setminus U$ from the proof of [33, Lemma 4.2].

Let $\vec{z} = (z_1, z_2, \ldots, z_\ell)$. With this notation, as in [33], identity (94) becomes

\[
x_1^{p_1} x_2^{p_2} \cdots x_\ell^{p_\ell} u(\vec{z}) y_1^{q_1} y_2^{q_2} \cdots y_\ell^{q_\ell} = x_1^{p_1} x_2^{p_2} \cdots x_\ell^{p_\ell} v(\vec{z}) y_1^{q_1} y_2^{q_2} \cdots y_\ell^{q_\ell}.
\]

Also, let

\[
\begin{align*}
 \vec{d} &= (d_1, d_2, \ldots, d_l); \\
 \vec{a}_k &= (a_k(1), a_k(2), \ldots, a_k(\ell)) & (k = 0, 1, \ldots, 2m); \\
 \vec{t}_q &= (t_q(1), t_q(2), \ldots, t_q(\ell)) & (q = 1, 2, \ldots, m); \\
 \vec{y}_q &= (y_q(1), y_q(2), \ldots, y_q(\ell)) & (q = 1, 2, \ldots, m).
\end{align*}
\]
We now wish to show that

\[
x^{p_i} \cdots x^{p_r} u(\tilde{d}) y^{q_1} \cdots y^{q_s} = x^{p_i} \cdots x^{p_r} v(\tilde{d}) y^{q_1} \cdots y^{q_s}.
\]

By [33, Lemma 4.3], \(\tilde{d} \in S^{[\ell]} \) is in the dominion of \(U^{[\ell]} \) in \((S^1)^{[\ell]} \), where \(T^{[\ell]} \), for any semigroup \(T \) and for any integer \(\gamma \geq 2 \), denotes the cartesian product of the \(\gamma \)-copies of \(T \). In fact, \(\tilde{d} \) has a zigzag over \(U^{[\ell]} \) in \((S^1)^{[\ell]} \) of length \(m \) as follows:

\[
\tilde{d} = \tilde{a}_0 \tilde{t}_1, \quad \tilde{a}_0 = \tilde{y}_1 \tilde{a}_1;
\]

\[
\tilde{y}_k \tilde{a}_{2k} = \tilde{y}_{k+1} \tilde{a}_{2k+1}, \quad \tilde{a}_{2k-1} \tilde{t}_k = \tilde{a}_{2k} \tilde{t}_{k+1} \quad (1 \leq k \leq m - 1, 1 \leq i \leq m - 1);
\]

\[
\tilde{a}_{2m-1} \tilde{t}_m = \tilde{a}_{2m}, \quad \tilde{y}_m \tilde{a}_{2m} = \tilde{d};
\]

(96)

where \(\tilde{a}_t \in U^{[\ell]} \) (\(t = 0, 1, \ldots, 2m \)) and \(\tilde{y}_q, \tilde{t}_q \in (S^1)^{[\ell]} \) (\(q = 1, 2, \ldots, m \)).

So suppose that \(x_1, \ldots, x_r, y_1, \ldots, y_s, d_1, \ldots, d_\ell \in S \). If all \(d_j \) that occur in the word \(u \) are in \(U \), then, by Lemma 4.2.1,

\[
x^{p_i} \cdots x^{p_r} u(\tilde{d}) y^{q_1} \cdots y^{q_s} = x^{p_i} \cdots x^{p_r} v(\tilde{d}) y^{q_1} \cdots y^{q_s},
\]
as required. Hence, we may assume that there exists at least one \(d_j \) (\(1 \leq j \leq \ell \)), say, such that \(d_j \in S \setminus U \). Then \(t^{(j)}_i, y^{(j)}_i \in S \setminus U \) for all \(i = 1,2,\ldots,m \). Letting \(x = x_1^{p_1} x_2^{p_2} \cdots x_r^{p_r} \) and \(y = y_1^{q_1} y_2^{q_2} \cdots y_s^{q_s} \), we have

\[
x^{p_i} \cdots x^{p_r} u(\tilde{d}) y^{q_1} \cdots y^{q_s} = xu(a_0(\tilde{t}_1))y
\]

(from equations (96))

\[
xu(a_0)u(\tilde{t}_1)y \quad \text{(by Lemma 4.3.2)}
\]

\[
xu(a_0)(t^{(j)}_1)^{|z_j|_u}u(\tilde{t}_1)y \quad \text{(by Lemma 4.3.4 as } t^{(j)}_1 \in S \setminus U)
\]

\[
xv(a_0)(t^{(j)}_1)^{|z_j|_u}u(\tilde{t}_1)y \quad \text{(by Proposition 4.2.3 as } |z_j|_u \geq q_1 \text{ and } t^{(j)}_1 \in S \setminus U)
\]

\[
xv(\tilde{y}_1 \tilde{a}_1)u(\tilde{t}_1)y
\]

(by equations (96) and Result 1.5.14 as \(t^{(j)}_1 \in S \setminus U \))

\[
xv(\tilde{y}_1)v(\tilde{a}_1)u(\tilde{t}_1)y \quad \text{(by dual of Lemma 4.3.2 as } y^{(j)}_1 \in S \setminus U)
\]

\[
xv(\tilde{a}_1)v(\tilde{y}_1)u(\tilde{t}_1)y \quad \text{(by Lemma 4.3.3 as } y^{(j)}_1 \in S \setminus U)
\]

\[
xv(\tilde{a}_1)(y^{(j)}_1)^{|z_j|_v}v(\tilde{y}_1)u(\tilde{t}_1)y \quad \text{(by Lemma 4.3.4 as } y^{(j)}_1 \in S \setminus U)
\]

\[
xu(\tilde{a}_1)(y^{(j)}_1)^{|z_j|_v}v(\tilde{y}_1)u(\tilde{t}_1)y
\]

(by Proposition 4.2.3 as \(|z_j|_v \geq q_1 \) and \(y^{(j)}_1 \in S \setminus U \))

93
Continuing in this way, we obtain
\begin{align*}
x_1^{p_1} \cdots x_n^{p_n} u(d) y_1^{q_1} \cdots y_s^{q_s} \\
= x v(\tilde{y}_1) u(\tilde{a}_1) y \\
= x v(\tilde{y}_2) u(\tilde{a}_2) y \\
= x v(\tilde{y}_{m-1}) u(\tilde{a}_{m-2}) y \\
= x v(\tilde{y}_m-1) u(\tilde{a}_{m-2}) y \\
(\text{by Lemma 4.3.2}) \\
= x v(\tilde{y}_m) u(\tilde{a}_{m-2}) y \\
(\text{from equations (96)).}
\end{align*}
\[\begin{align*}
&= x v(\tilde{y}_m) u(\tilde{a}_{2m-1} \cdots \tilde{a}_1) y \quad \text{(by Lemmas 4.3.2 and 4.3.3 as } y_m^{(i)} \in S \setminus U) \\
&= x u(\tilde{a}_{2m}) v(\tilde{y}_m) y \quad \text{(from equations (96))} \\
&= x u(\tilde{a}_{2m}) v(\tilde{y}_m) y \quad \text{(by Lemma 4.3.3 as } y_m^{(i)} \in S \setminus U) \\
&= x u(\tilde{a}_{2m}) (y_m^{(i)})^{z_j v} v(\tilde{y}_m) y \quad \text{(by Lemma 4.3.4 as } y_m^{(i)} \in S \setminus U) \\
&= x u(\tilde{a}_{2m}) v(\tilde{y}_m) y \quad \text{(by Proposition 4.2.3 as } |z_j|_v \geq q_1 \text{ and } y_m^{(i)} \in S \setminus U) \\
&= x u(\tilde{a}_{2m}) v(\tilde{y}_m) y \quad \text{(by Lemma 4.3.4)} \\
&= x u(\tilde{a}_{2m}) v(\tilde{a}_{2m}) y \quad \text{(by Lemma 4.3.3 as } y_m^{(i)} \in S \setminus U) \\
&= x u(\tilde{a}_{2m} \tilde{a}_{2m}) y \quad \text{(by the dual of Lemma 4.3.2)} \\
&= x_1^{p_1} \cdots x_r^{p_r} v(d) y_1^{q_1} \cdots y_s^{q_s}
\end{align*} \]

where the last inequality follows from equations (96), and as \(x = x_1^{p_1} \cdots x_r^{p_r} \) and \(y = y_1^{q_1} \cdots y_s^{q_s} \). This completes the proof of the theorem. \(\square \)