Figures
Fig. 1 Log CFU of metal tolerant soil fungi at different metal concentrations
Fig. 2 Log CFU of metal tolerant soil bacteria at different metal concentrations
Fig. 3 Log CFU of metal tolerant soil actinomycetes at different metal concentrations
Fig. 4 Log CFU of metal tolerant fungi, bacteria and actinomycetes of wastewater at different metal concentrations.
Fig. 5 Diversity of soil fungal genera at different concentration of heavy metals
Fig. 6 Heavy metal tolerance level among 73 soil fungal isolates

Fig. 7 Heavy metal tolerance (MIC) among 20 *Aspergillus* isolates
Fig. 8 Plant growth promoting activities among soil fungal isolates
In figures (9 to 12), the fungal genera have been shown with the symbols of As (Aspergillus), P (Penicillium), F (Fusarium), AL (Alternaria), M (Monilia), MST (Mycelia Sterilia), R (Rhizopus), TD (Trichoderma), HM (Hormondendrum), V (Verticillium), TR (Trichophyton), MN (Monotospora), MU (Mucor), M (Microsporum) and TH (Trichotheccium)
Fig. 9 Phosphate solubilization and organic acid production capability of soil fungal isolates
Fig. 10 Lipase production capability of some *Aspergillus* isolates

Fig. 11 Phosphate solubilization capability of *Aspergillus* isolates in liquid medium
Fig. 12 IAA production by *Aspergillus* isolates in liquid medium
Fig. 13 Effect of heavy metals on biomass production of soil fungal isolates
Fig. 14 Effect of heavy metals on biomass production of soil fungal isolates
Fig. 15 Effect of heavy metals on biomass production of soil fungal isolates
Fig. 16 Effect of heavy metals on biomass production of soil fungal isolates
Fig. 17 Effect of heavy metals on biomass production of soil fungal isolates
Fig. 18 Effect of heavy metals on biomass production of soil fungal isolates.
In Figures (19 to 28), the fungal isolates have been shown with the symbols of A1 (Aspergillus niger), A2 (Aspergillus sp-02), A3 (Aspergillus sp-03), A4 (Aspergillus sydowi), A5 (Aspergillus sp-05), AL1 (Alternaria sp-01), C1 (Curvularia sp-01), C2 (Curvularia clavata), C-3 (Curvularia sp-03), C4 (Curvularia sp-04), F1 (Fusarium sp-01), M1 (Mucor sp-01), MN1 (Monilia sp-01), MR1 (Microsporum sp-01), P1 (Penicillium sp-01), P2 (Penicillium sp-02), P3 (Penicillium sp-03), R1 (Rhizopus oryzae), T1 (Trichophyton sp-01), and TD1 (Trichoderma sp-01).
Fig. 19 Tolerance index of some soil fungal isolates against chromium
Fig. 20 Tolerance index of some soil fungal isolates against chromium

Cr$^{+6}$ (400 µg/ml)

Cr$^{+6}$ (800 µg/ml)
Fig. 21 Tolerance index of some soil fungal isolates against cadmium
Fig. 22 Tolerance index of some soil fungal isolates against cadmium
Fig. 23 Tolerance index of some soil fungal isolates against nickel
Fig. 24 Tolerance index of some soil fungal isolates against nickel
Fig. 25 Tolerance index of some soil fungal isolates against cobalt
Fig. 26 Tolerance index of some soil fungal isolates against cobalt
Fig. 27 Tolerance index of some soil fungal isolates against copper
Fig. 28 Tolerance index of some soil fungal isolates against copper
Fig. 29 Heavy metal effect on radial mycelial growth of some soil fungal isolates after 7 days
Fig. 30 Heavy metal effect on radial mycelial growth of some soil fungal isolates after 7 days
Fig. 31 Heavy metal effect on radial mycelial growth of some soil fungal isolates after 7 days
Fig. 32 Heavy metal effect on radial mycelial growth of some soil fungal isolates after 7 days
Fig. 33 Heavy metal effect on radial mycelial growth of some soil fungal isolates after 7 days.
Fig. 34 Heavy metal effect on radial mycelial growth of some soil fungal isolates after 7 days
Fig. 35 Heavy metal effect on radial mycelial growth of some soil fungal isolates after 7 days
Fig. 36 Heavy metal effect on radial mycelial growth of some soil fungal isolates after 7 days
Fig. 37 Heavy metal effect on phosphate solubilization capability of some soil fungal isolates in solid medium
Fig. 38 Heavy metal effect on phosphate solubilization capability of some soil fungal isolates in solid medium.
Fig. 39 Heavy metal effect on phosphate solubilization capability of some soil fungal isolates in liquid medium.
Fig. 40 Heavy metal effect on phosphate solubilization capability of some soil fungal isolates in liquid medium
Fig. 41 Heavy metal effect on fungal biomass production (DW) during the phosphate solubilization in liquid medium
Fig. 42 Heavy metal effect on fungal biomass production (DW) during the phosphate solubilization in liquid medium
Fig. 43 Heavy metal effect on IAA production capability of some soil fungal isolates in liquid medium
Fig. 44 Heavy metal effect on IAA production capability of some soil fungal isolates in liquid medium
Fig. 45 Heavy metal effect on fungal biomass production (DW) during IAA production in liquid medium
Fig. 46 Heavy metal effect on fungal biomass production (DW) during IAA production in liquid medium.
Fig. 47 Comparison of biosorption capacity for chromium ions using dead and living biomass of selected fungal isolates (Langmuir isotherm)
Fig. 48 Comparison of biosorption capacity for chromium ions using dead and living biomass of selected fungal isolates (Langmuir isotherm)
Fig. 49 Comparison of biosorption capacity for cadmium ions using dead and living biomass of selected fungal isolates (Langmuir isotherm)
Fig. 50 Comparison of biosorption capacity for cadmium ions using dead and living biomass of selected fungal isolates (Langmuir isotherm)
Fig. 51 Comparison of biosorption capacity for nickel ions using dead and living biomass of selected fungal isolates (Langmuir isotherm)
Fig. 52 Comparison of biosorption capacity for nickel ions using dead and living biomass of selected fungal isolates (Langmuir isotherm)
Fig. 53a. Linear regression between chlorophyll content and nitrogen content at different stages in 2006.
Fig. 53b. Linear regression between chlorophyll content and nitrogen content at different stages in 2007.
Fig. 54a. Linear regression between nodule number and dry nodule weight at different stages in 2006.
Fig. 54b. Linear regression between nodule number and dry nodule weight at different stages in 2007
Fig. 55a. Linear regression between dry nodule weight and total dry weight of plant in 2006

\[y = 12.16x + 7.370 \]
\[R^2 = 0.657 \]

![Graph showing the linear regression between dry nodule weight and total dry weight of plant in 2006.]

Fig. 55b. Linear regression between dry nodule weight and total dry weight of plant in 2007

\[y = 11.65x + 7.493 \]
\[R^2 = 0.599 \]

![Graph showing the linear regression between dry nodule weight and total dry weight of plant in 2007.]

295
Fig. 56a. Linear regression between leg-haemoglobin content and nitrogenase activity in 2006

\[y = 0.859x + 262.0 \]
\[R^2 = 0.926 \]

Fig. 56b. Linear regression between leg-haemoglobin content and nitrogenase activity in 2007

\[y = 0.894x + 250.2 \]
\[R^2 = 0.930 \]
Fig. 57a. Linear regression between leg-haemoglobin content and protein content in 2006

Fig. 57b. Linear regression between leg-haemoglobin content and protein content in 2007
Fig. 58a. Linear regression between nitrogenase activity and protein content in 2006

\[y = 0.027x + 12.73 \]

\[R^2 = 0.922 \]

Fig. 58b. Linear regression between nitrogenase activity and protein content in 2007

\[y = 0.026x + 13.37 \]

\[R^2 = 0.915 \]
Fig. 59a. Linear regression between nitrogen content and protein content in 2006

\[y = 6.726x - 4.412 \]
\[R^2 = 0.941 \]

Fig. 59b. Linear regression between nitrogen content and protein content in 2007

\[y = 6.399x - 3.105 \]
\[R^2 = 0.948 \]