CHAPTER-4

EDGE SUM NUMBER OF SOME SPECIAL GRAPHS

In this chapter we find the edge sum number of some special graphs such as
\[(P_2 \times C_{2n+1}), (J_{2,n}), (J_{3,3}), (J_{3,4}) \text{ and } s_n^0. \]

In 1990, Harary [9] introduced the notion of a sum graph. A graph \(G(V, E) \) is said to be a sum graph if there is a bijective labeling from \(V \) to a set of positive integers \(S \) such that \(xy \in E \) if and only if \(f(x) + f(y) \in S \). The edge sum graph, the edge analogue of sum graph was defined by D.S.T. Ramesh and et.al and studied its properties [12, 16, 17, and 18].

4.1 Definition: Let \(G(V, E) \) be a graph. A bijection \(f: E \rightarrow S \) where \(S \) is a set of positive integers is called an edge function of the graph \(G \). Define \(F(v) = \sum \{f(e): e \text{ is incident on } v\} \) on \(V \). Then \(F \) is called the edge sum function of the edge function \(f \).

\(G \) is said to be an edge sum graph if there exists an edge function \(f: E \rightarrow S \) such that \(f \) and its corresponding edge sum function \(F \) on \(V \) satisfy the following conditions:

1. \(F \) is into \(S \). That is, \(F(v) \in S \) for every \(v \in V \).
2. If \(e_1, e_2, \ldots, e_n \in E \) such that \(f(e_1) + f(e_2) + \ldots + f(e_n) \in S \), then \(e_1, e_2, \ldots, e_n \) are incident on a vertex.

4.1 Example: Let \(V = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\} \) be the vertex set and \(E = \{u_1u_2, u_2u_3, u_3u_4, u_2u_5, u_3u_6, u_7u_8\} \) be the edge set of the graph \(G \).

The edge function \(f: E \rightarrow S \) is defined by \(f(u_1u_2) = 6, f(u_2u_3) = 3, f(u_3u_4) = 4, f(u_2u_5) = 5, f(u_3u_6) = 7 \) and \(f(u_7u_8) = 14 \). The corresponding edge sum function \(F \) is given by \(F(u_1) = 6, F(u_2) = 14, F(u_3) = 14, F(u_4) = 4, F(u_5) = 5, F(u_6) = 7, F(u_7) = 14 \) and \(F(u_8) = 14 \). Clearly \(G \) is an edge sum graph.

![Figure 4.1](image)

We give some of the results which have already been proved.

4.1 Theorem: Let \(G(V, E) \) be an edge sum graph. Then \(K_2 \) is a component of \(G \).

4.1 Remark: The graph \(K_2 \) is the only connected edge sum graph.
4.2 Theorem: Let $G(V, E)$ be an edge sum graph with edge function $f: E \rightarrow S$ and edge sum function F. Let e_1, e_2, \ldots, e_m where $m > 1$ be a collection of edges incident on a vertex $u \in V$. Let $\ell_1, \ell_2, \ldots, \ell_n$ be another collection of edges none of them incident on u such that $f(e_1) + f(e_2) + \ldots + f(e_m) = f(\ell_1) + f(\ell_2) + \ldots + f(\ell_n)$. Then all of $\ell_1, \ell_2, \ldots, \ell_n$ are incident on a vertex (say) v (with $v \neq u$) such that $(\deg u, \deg v) \in \{m, (m+1)\} \times \{n, (n+1)\}$ and one of the following statements holds:

1. u and v are adjacent and $(\deg u, \deg v) \neq (m, n)$.

2. u and v are not adjacent and $(\deg u, \deg v) = (m, n)$. ■

4.3 Theorem: Let $G(V, E)$ be an edge sum graph with edge function $f: E \rightarrow S$ and edge sum function F of f. Let w be a nonpendent vertex and $e = uv \in E$ be such that $F(w) = f(e)$. Then one of the following holds:

1. $\{u, v\}$ forms a K_2 component in G.

2. $\langle\{u, v, w\}\rangle$ is either K_3 or P_2 with one of u, v as a pendant vertex in G. ■

4.4 Theorem: Let $G(V, E)$ be an edge sum graph with edge function $f: E \rightarrow S$ and edge sum function F of f. Let $\ell_1, \ell_2, \ldots, \ell_m$ where $m > 1$ be a collection of edges incident on a vertex
w (say). Let \(w_i = \ell_i \) for \(1 \leq i \leq m \). If there exists an edge \(e = uv \) such that
\[
 f(\ell_1) + f(\ell_2) + \ldots + f(\ell_m) = f(e),
\]
then one of the following holds:

1. \(\{u, v\} \) forms a \(K_2 \) component in \(G \).

2. \(<\{u, v, w\}> \) is \(K_3 \) or \(P_2 \) or \(P_1 \) with one of \(u, v \) as a pendant vertex in \(G \).

4.2 Definition: The smallest number \(r \) so that \(G \cup rK_2 \) becomes an edge sum graph is called the **edge sum number** of the graph \(G \) and is denoted by \(\sigma_E(G) \).

For any connected graph \(G \) other than \(K_2 \), \(\sigma_E(G) \geq 1 \).

Example: Consider the graph \(K_3 \). The edge function given in Figure 4.2 shows that \(\sigma_E(K_3) = 2 \).

![Figure 4.2](image)

4.3 Definition: Let \(\sigma_E(G) = r \). An edge function \(f: E \rightarrow S \) and its corresponding edge sum function \(F \) which make \(G \cup rK_2 \) an edge sum graph are respectively called an **optimal edge function** and an **optimal edge sum function** of \(G \).
For a graph G with $\sigma_E(G) = r$, there can be many optimal edge functions. Let E_1 be the edge set of G and E_2 be that of rK_2. We denote $F(V) = \{F(v) : v \in V\}$ and $f(E_i) = \{f(e) : e \in E_i\}$ for $1 \leq i \leq 2$. Then, $\sigma_E(G) = \text{Cardinality of the set } \{F(v) : v \in V; F(v) \notin f(E_1)\}$. F is said to be an **outer edge sum function** if $F(V) \cap f(E_1) = \emptyset$ and an **inner edge sum function** if $F(V) \cap f(E_1) \neq \emptyset$. The range of F has at least r elements. It has exactly r elements if and only if F is an outer edge sum function.

4.5 Theorem: Let $f : E \to S$ be an optimal edge function. If G has no pendent vertex and is triangle free, then F is an outer edge sum function.

Proof: Let E_1 be the edge set of G and E_2 that of rK_2. Let $u \in V$.

Since $F(u) \in S$, there is an edge vw such that $F(u) = f(vw)$. If $vw \in E_1$, then $\langle \{u, v, w\}\rangle$ is K_3 or P_2 or P_1 with v or w as a pendent vertex which is a contradiction. Hence $vw \in E_2$ so that F is an outer edge sum function.

4.2 Remark: It is easily seen that every optimal edge sum function F of a graph G is inner if G has a pendent vertex and is outer if G contains no pendent vertex and triangle free. If G has no pendent
vertex but contains a triangle then F can be either inner (See Figure 4.2(a)) or outer (See Figure 4.2(b)).

Let $E = E_1 \cup E_2$ where E_1 is the edge set of G and E_2 that of rK_2. Then, $\sigma_E(G) = \text{Cardinality of the set } \{F(v) : v \in V; F(v) \notin f(E_1)\}$. F is said to be **outer edge sum function** if $F(V) \cap f(E_1) = \phi$. If $F(V) \cap f(E_1) \neq \phi$, then F is said to be an **inner edge sum function**. The range of F has atleast r elements. It has exactly r elements if and only if F is outer edge sum function.
4.6 Theorem: \(\sigma_E(P_2 \times C_{2n+1}) = 2 \).

Proof: Let \(G = P_2 \times C_{2n+1} \) where \(V(G) = \{u_i, v_i : 1 \leq i \leq 2n + 1\} \) and
\[E(G) = \{u_iu_{i+1}, v_iv_{i+1}, u_iv_i : 1 \leq i \leq 2n\} \cup \{v_{2n+1}v_1, u_{2n+1}u_1, u_{2n+1}v_{2n+1}\} \.

Suppose \(\sigma_E(G) = 1 \).

Let \(f \) be an edge function and \(F \) be the corresponding edge sum function that makes \(G \cup K_2 \) is an edge sum graph. Let \(w_1w_2 \) be the \(K_2 \) component of \(G \cup K_2 \) is an edge sum graph. Since \(G \) is triangle free and has no pendent vertex, \(F \) is an outer edge sum function.

That is, \(F(u) = f(w_1w_2) \) for all \(u \in V \)

That is, let \(f(u_iu_{i+1}) = a_i \) for \(1 \leq i \leq 2n \)
\[f(v_iv_{i+1}) = b_i \] for \(1 \leq i \leq 2n \)
\[f(u_{2n+1}u_1) = a_{2n+1} \]
\[f(v_{2n+1}v_1) = b_{2n+1} \]
\[f(u_iv_i) = z_i \] for \(1 \leq i \leq 2n + 1 \)
\[f(w_1w_2) = z \]

Now \(F(u_1) = f(u_{2n+1}u_1) + f(u_1u_2) + f(u_1v_1) \)
\[= a_{2n+1} + a_1 + z_1 = z \]
\(F(v_1) = f(v_{2n+1}v_1) + f(v_1v_2) + f(u_1v_1) \)
\[= b_{2n+1} + b_1 + z_1 = z \]
Therefore, $a_{2n+1} + a_1 = b_{2n+1} + b_1$

Similarly, $a_1 + a_2 = b_1 + b_2$

\[
a_2 + a_3 = b_2 + b_3
\]

\[
a_3 + a_4 = b_3 + b_4
\]

Proceeding like this we get

\[
a_{2n} + a_{2n+1} = b_{2n} + b_{2n+1}
\]

\[
a_{2n+1} + a_1 = b_{2n+1} + b_1
\]

Suppose $a_1 < b_1 \Rightarrow a_2 > b_2$

\[
\Rightarrow a_3 < b_3
\]

Proceeding like this we get,

$a_i < b_i$ if i is odd

$a_i > b_i$ if i is even

Therefore, $a_{2n} > b_{2n} \Rightarrow a_{2n+1} < b_{2n+1}$

\[
\Rightarrow a_1 > b_1
\]

This is a contradiction. Therefore $\sigma_E(G) > 1$.

We prove $\sigma_E(G) = 2$ by taking the graph $G \cup 2K_2$. Let

$x = 2^{2n+7}$, $y = 2^{2n+4}$, $z = 2^{2n+5}$. Let $S = \{x + 2^{2n+2-i} \mid 1 \leq i \leq 2n+1\}$

\[
\cup \left\{ y + (2n+1)x + (2^{2n+2} - 2) + \sum_{j=1}^{i-1} 2^{2n+1-2j} \text{ for } 0 \leq i \leq n - 1 \right\}
\]

\[
\cup \left\{ y + (2n+1)x + (2^{2n+2} - 2) + \sum_{j=1}^{n} 2^{2n+1-2j} + \sum_{j=1}^{i} 2^{2n+2-2j} \text{ for } 1 \leq i \leq n \right\}
\]
\[
\begin{align*}
\bigcup \left\{ y + (2n + 1)x + (2^{2n+2} - 2) + \sum_{j=1}^{n} 2^{2n+1-2j} \right\} \\
\bigcup \left\{ z + (2n + 1)x + (2^{2n+2} - 2) + \sum_{j=1}^{i} 2^{2n+1-2j} \text{ for } 0 \leq i \leq n - 1 \right\} \\
\bigcup \left\{ z + (2n + 1)x + (2^{2n+2} - 2) + \sum_{j=1}^{n} 2^{2n+1-2j} + \sum_{j=1}^{i} 2^{2n+2-2j} \text{ for } 1 \leq i \leq n \right\} \\
\bigcup \left\{ z + (2n + 1)x + (2^{2n+2} - 2) + \sum_{j=1}^{n} 2^{2n+1-2j} \right\}.
\end{align*}
\]

Consider the graph \(G \cup 2K_2 \) where \(V(G) = \{u_i, v_i : 1 \leq i \leq 2n + 1\} \)

\(\cup \{w_i \text{ for } 1 \leq i \leq 4\} \) and \(E(G) = \{u_iu_{i+1}, v_iv_{i+1}, u_iv_i : 1 \leq i \leq 2n\} \)

\(\cup \{v_{2n+1}v_1, u_{2n+1}u_1, u_{2n+1}v_{2n+1}\} \cup \{w_1w_2, w_3w_4\} \).

We define \(f(u_i, v_i) = x + 2^{2n+2-i} \text{ for } 1 \leq i \leq 2n + 1 \)

\[
f(u_{2i+1}u_{2i+2}) = 2^{2n+5} + (2n + 1)x + 2^{2n+2} - 2 + \sum_{j=1}^{i} 2^{2n+1-2j} \text{ for } 0 \leq i \leq n - 1
\]

\[
f(u_{2i}u_{2i+1}) = 2^{2n+5} + (2n + 1)x + 2^{2n+2} - 2 + \sum_{j=1}^{n} 2^{2n+1-2j} + \sum_{j=1}^{i} 2^{2n+2-2j} \text{ for } 1 \leq i \leq n
\]

\[
f(u_{2n+1}u_1) = 2^{2n+5} + (2n + 1)x + 2^{2n+2} - 2 + \sum_{j=1}^{n} 2^{2n+1-2j}
\]

\[
f(v_{2i+1}v_{2i+2}) = 2^{2n+4} + (2n + 1)x + 2^{2n+2} - 2
\]
+\sum_{j=1}^{i} 2^{2n+1-2j} \text{ for } 0 \leq i \leq n - 1

f(v_{2i},v_{2i+1}) = 2^{2n+4} + (2n+1)x + 2^{2n+2} - 2 + \sum_{j=1}^{n} 2^{2n+1-2j}

+\sum_{j=1}^{i} 2^{2n+2-2j} \text{ for } 1 \leq i \leq n

f(v_{2n+1},v_1) = 2^{2n+4} + (2n+1)x + 2^{2n+2} - 2 + \sum_{j=1}^{n} 2^{2n+1-2j}

F(u_i) = f(u_{i-1}u_i) + f(u_{i+1}u_i) + f(u_{i}v_{i}) \text{ for } 2 \leq i \leq 2n

F(u_1) = f(u_{2n+1}u_1) + f(u_{1}u_2) + f(u_{1}v_{1})

F(u_{2n+1}) = f(u_{2n}u_{2n+1}) + f(u_{2n}u_1) + f(u_{2n+1}v_{2n+1})

F(v_i) = f(v_{i-1}v_i) + f(v_{i+1}v_i) + f(u_{i}v_{i}) \text{ for } 2 \leq i \leq 2n

F(v_1) = f(v_{2n+1}v_1) + f(v_1v_2) + f(u_2v_{1})

F(v_{2n+1}) = f(v_{2n}v_{2n+1}) + f(v_{2n}v_1) + f(u_{2n+1}v_{2n+1})

Hence we get,

F(u_i) = (4n+3)x + 2^{2n+6} + 2^{2n+4} + 2^{2n+3} + 2^{2n-1} + 2^{2n-3} + 2^{n-5} - 4

\text{ for } 1 \leq i \leq 2n + 1.

F(v_i) = (4n+3)x + 2^{2n+5} + 2^{2n+3} + 2^{2n+1} + 2^{2n-1} + 2^{2n-3} + 2^{n-5} - 4

\text{ for } 1 \leq i \leq 2n + 1.

We have proved that \(F(v) \in \{ f(w_1w_2), f(w_2w_3) \} \) for all \(v \in G \).

Also we have given labels to the edges in such a way that none of
the other sums of the labels except those incidents on a single vertex is a label of an edge.

Hence $\sigma_E(P_2 \times C_{2n+1}) = 2$.

The edge function given in Figure 4.6 shows that $\sigma_E(P_2 \times C_7) = 2$.

\[\begin{align*}
\text{where } & x = 2^{31}; y = 2^{10}; z = 2^{31}; A = 7x + 2^8 - 2; B = 2^5 + 2^3 + 2^1; \\
& C = 15x + 2^0 + 2^7 + 2^5 + 2^1 + 2^1 - 4.
\end{align*} \]
4.7 Theorem: $\sigma_E(J_{2,n}) = 2$.

Proof: Let $G = J_{2,n}$ be a graph where $V(G) = \{v\}$
$\cup\{v_{i,j} : 1 \leq i \leq n; 1 \leq j \leq 2\}$ and $E(G) = \{v_{i,j}, v_{i,j+1} : 1 \leq i \leq n; 1 \leq j \leq 2\}$
$\cup\{v_{i,2}, v_{i+1,1} : 1 \leq i \leq n - 1\}$ $\cup\{v_{n,2}, v_{1,1}\}$ $\cup\{vv_i : 1 \leq i \leq n\}$.

To prove $\sigma_E(J_{2,n}) > 1$

Suppose $\sigma_E(J_{2,n}) = 1$.

Then there exists an optimal edge function f and its corresponding edge sum function F such that $G \cup K_2$ is an edge sum graph. Let w_1w_2 be the K_2 component of $G \cup K_2$. Since G is triangle free and has no pendent vertex, F is an outer edge sum function.

That is, $F(u) = f(w_1w_2) = a$ (say) for all $u \in V$

$F(v_{1,1}) = f(v_{n,2}v_{1,1}) + f(vv_{1,1}) + f(v_{1,1}v_{1,2}) = a$ (1)

$F(v_{1,2}) = f(v_{1,1}v_{1,2}) + f(v_{1,2}v_{2,1}) = a$ (2)

$F(v_{2,1}) = f(v_{12}v_{21}) + f(vv_{21}) + f(v_{21}v_{22}) = a$ (3)

$F(v_{2,2}) = f(v_{2,1}v_{2,2}) + f(v_{2,2}v_{3,1}) = a$ (4)

$F(v_{3,1}) = f(v_{2,2}v_{3,1}) + f(vv_{3,1}) + f(v_{3,1}v_{3,2}) = a$ (5)

$F(v_{3,2}) = f(v_{3,1}v_{3,2}) + f(vv_{3,2}) = a$ (6)

Proceeding like this we get,
\[F(v_{n,1}) = f(v_{n-1,2}v_{n,1}) + f(vv_{n,1}) + f(v_{n,1}v_{n,2}) = a \] \hspace{1cm} (7)

\[F(v_{n,2}) = f(v_{n,1}v_{n,2}) + f(v_{n,2}v_{1,1}) = a \] \hspace{1cm} (8)

From equations (1) & (2)

\[f(v_{n,2}v_{1,1}) + f(vv_{1,1}) + f(v_{1,1}v_{1,2}) = f(v_{1,1}v_{1,2}) + f(v_{1,2}v_{2,1}) \]

\[\Rightarrow f(v_{n,2}v_{1,1}) + f(vv_{1,1}) = f(v_{1,2}v_{2,1}) \]

\[\Rightarrow f(v_{n,2}v_{1,1}) < f(v_{1,2}v_{2,1}) \] \hspace{1cm} (9)

From equations (3) & (4)

\[f(v_{1,2}v_{2,1}) + f(vv_{2,1}) + f(v_{2,1}v_{2,2}) = f(v_{2,1}v_{2,2}) + f(v_{2,2}v_{3,1}) \]

\[\Rightarrow f(v_{1,2}v_{2,1}) + f(vv_{2,1}) = f(v_{2,2}v_{3,1}) \]

\[\Rightarrow f(v_{1,2}v_{2,1}) < f(v_{2,2}v_{3,1}) \] \hspace{1cm} (10)

From equations (9) & (10)

\[f(v_{n,2}v_{1,1}) < f(v_{2,2}v_{3,1}) \] \hspace{1cm} (11)

From equations (5) & (6)

\[f(v_{2,2}v_{3,1}) + f(vv_{3,1}) + f(v_{3,1}v_{3,2}) = f(v_{3,1}v_{3,2}) + f(v_{3,2}v_{4,1}) \]

\[\Rightarrow f(v_{2,2}v_{3,1}) + f(vv_{3,1}) = f(v_{3,2}v_{4,1}) \]

\[\Rightarrow f(v_{2,2}v_{3,1}) < f(v_{3,2}v_{4,1}) \] \hspace{1cm} (12)

From equations (11) & (12)

\[f(v_{n,2}v_{1,1}) < f(v_{3,2}v_{4,1}) \] \hspace{1cm} (13)
Proceeding like this we get,
\[f(v_{n,2}v_{1,1}) < f(v_{4,2}v_{5,1}) \]
\[f(v_{n,2}v_{1,1}) < f(v_{5,2}v_{6,1}) \]

Continuing like this we get,
\[f(v_{n,2}v_{1,1}) < f(v_{n-1,2}v_{n,1}) \] \[\ldots \ldots \ (I)\]

From equations (7) & (8)
\[f(v_{n-1,2}v_{n,1}) + f(vv_{n,1}) + f(v_{n,1}v_{n,2}) = f(v_{n,1}v_{n,2}) + f(v_{n,2}v_{1,1}) \]
\[f(v_{n-1,2}v_{n,1}) + f(vv_{n,1}) = f(v_{n,2}v_{1,1}) \]
\[\Rightarrow f(v_{n,2}v_{1,1}) > f(v_{n-1,2}v_{n,1}) \] \[\ldots \ldots \ (II)\]

This is a contradiction to (I). Hence \(\sigma_E(J_{2,n}) > 1 \).

Now we prove that \(\sigma_E(J_{2,n}) = 2 \) by taking the graph \(G \cup 2K_2 \).

Consider the graph \(G \cup 2K_2 \) where \(V(G) = \{v\} \)
\[\cup \{v_{i,j} : 1 \leq i \leq n; 1 \leq j \leq 2\} \cup \{w_i \text{ for } 1 \leq i \leq 4\} \] and \(E(G) = \)
\[\{v_{i,j}, v_{i,j+1} : 1 \leq i \leq n; 1 \leq j \leq 2\} \cup \{v_{i,2}v_{i+1,1}, v_{i+1,1} : 1 \leq i \leq n-1\} \cup \{v_{n,2}v_{1,1}\} \]
\[\cup \{vv_{i,1} : 1 \leq i \leq n\} \cup \{w_1w_2, w_3w_4\}. \]

Let \(x = 2^{4n} \). Let \(S = \left\{ \frac{n}{2}x - 2^{3n+i-1} : 1 \leq i \leq n \right\} \)
\[\cup \left\{ \frac{n}{2}x + 2^{3n+i-1} : 1 \leq i \leq n-1 \right\} \cup \left\{ \frac{n}{2}x + 2^{3n+n-1} \right\} \]
\[\cup \{ x + 2^{3n} - 2^{3n+n-1} \} \cup \{ x + 2^{3n+i-1} - 2^{3n+i-2} : 2 \leq i \leq n \}. \]

We define
\[f(v_{i,1}v_{i,2}) = \frac{n}{2} x - 2^{3n+i-1} \text{ for } 1 \leq i \leq n \]
\[f(v_{i,2}v_{i+1,1}) = \frac{n}{2} x + 2^{3n+i-1} \text{ for } 1 \leq i \leq n - 1 \]
\[f(v_{n,2}v_{1,1}) = \frac{n}{2} x + 2^{3n+n-1} \]
\[f(vv_{1,1}) = x + 2^{3n} - 2^{3n+n-1} \]
\[f(vv_{i,1}) = x + 2^{3n+i-1} - 2^{3n+i-2} \text{ for } 2 \leq i \leq n \]

The corresponding edge sum functions are
\[F(v_{i,1}) = f(v_{i-1,2}v_{i,1}) + f(v_{i,1}v_{i,2}) + f(vv_{i,1}) \text{ for } 2 \leq i \leq n \]
\[F(v_{1,1}) = f(v_{n,2}v_{1,1}) + f(v_{1,1}v_{1,2}) + f(vv_{1,1}) \]
\[F(v_{i,2}) = f(v_{i,1}v_{i,2}) + f(v_{i,2}v_{i+1,1}) \text{ for } 1 \leq i \leq n - 1 \]
\[F(v_{n,2}) = f(v_{n,1}v_{n,2}) + f(v_{n,2}v_{1,1}) \]
\[F(v) = \sum_{i=1}^{n} f(vv_{i,1}) \]

Now, \(F(v_{1,1}) = F(v_{2,1}) = \ldots = F(v_{n,1}) = F(v) = (n+1)x \) and
\[F(v_{1,2}) = F(v_{2,2}) = \ldots = F(v_{n,2}) = nx. \]

We have proved that \(F(v) \in \{ f(w_1w_2), f(w_3w_4) \} \) for all \(v \in G \). Also, we have given labels to the edges in such a way that
none of the other sums of the labels except those incidents on a single vertex is a label of an edge. Hence $\sigma_E(J_{2,n}) = 2$.

The edge function given in Figure 4.7 shows that $\sigma_E(J_{2,7}) = 2$.

4.8 Theorem: $\sigma_E(J_{3,3}) = 3$.

Proof: Let $G = J_{3,3}$ where $V(G) = \{v\} \cup \{v_{i,j}: 1 \leq i \leq 3; 1 \leq j \leq 3\}$ and $E(G) = \{v_{i,j}v_{i,j+1}: 1 \leq i \leq 3; 1 \leq j \leq 2\} \cup \{v_{i,2}v_{i+1,1}: 1 \leq i \leq 2\}$

$\cup \{v_{3,3}v_{i,1}\} \cup \{vv_{i,1}: 1 \leq i \leq 3\}$.

where $x = 2^{28}$.

Figure 4.7
First let us prove that $\sigma_E(J_{3,3}) > 1$.

Suppose $\sigma_E(J_{3,3}) = 1$.

Then there exists an optimal edge function f and its corresponding edge sum function F such that $G \cup K_2$ is an edge sum graph. Let w_1w_2 be the K_2 component of $G \cup K_2$. Since G is triangle free and has no pendent vertex, F is an outer edge sum function.

That is, $F(u) = f(w_1w_2) = a$ (say) for all $u \in V$

$F(v_{1,2}) = f(v_{1,1}v_{1,2}) + f(v_{1,2}v_{1,3}) = a$

$F(v_{1,3}) = f(v_{1,2}v_{1,3}) + f(v_{1,3}v_{2,1}) = a$

That is, $f(v_{1,1}v_{1,3}) = f(v_{1,3}v_{2,1})$

This is not possible as f is a bijection. Hence $\sigma_E(J_{3,3}) > 1$.

Suppose $\sigma_E(J_{3,3}) = 2$.

Then there exists an optimal edge function f and an optimal edge sum function F such that $G \cup 2K_2$ is an edge sum graph. Let w_1w_2 and w_3w_4 be the edges of the K_2 component of $G \cup 2K_2$.

Let $f(w_1w_2) = a$ and $f(w_3w_4) = b$.

Suppose $F(v_{1,1}) = a$.

That is, $f(vv_{1,1}) + f(v_{3,3}v_{1,1}) + f(v_{1,1}v_{1,2}) = a$
This cannot be equal to \(F(v_{1,2}) = f(v_{1,1}v_{1,2}) + f(v_{1,2}v_{1,3}) \) as \(f(vv_{1,1}) + f(v_{3,3}v_{1,1}) + f(v_{1,1}v_{1,2}) = f(v_{1,1}v_{1,2}) + f(v_{1,2}v_{1,3}) \)

\[\Rightarrow f(vv_{1,1}) + f(v_{3,3}v_{1,1}) = f(v_{1,2}v_{1,3}) \ldots \ldots \text{(1)} \]

\(F(v_{1,3}) = f(v_{1,2}v_{1,3}) + f(v_{1,3}v_{2,1}) \)

\[= f(vv_{1,1}) + f(v_{3,3}v_{1,1}) + f(v_{1,3}v_{2,1}) \in S. \] This is not possible as \(vv_{1,1}, v_{3,3}v_{1,1}, v_{1,3}v_{2,1} \) are not incident on a vertex.

Therefore, \(F(v_{1,1}) \neq F(v_{1,2}). \)

Similarly, \(F(v_{1,1}) \neq F(v_{3,3}). \)

Let \(F(v_{1,2}) = b. \)

Since we have assumed \(\sigma_E(J_{3,3}) = 2 \), we have \(F(v) \in \{a, b\}. \)

Therefore, as \(F(v_{1,2}) \neq F(v_{1,3}), F(v_{1,3}) = a \)

Proceeding like this we get

\(F(v_{2,1}) \neq F(v_{1,3}), F(v_{2,1}) = b \)

\(F(v_{2,2}) \neq F(v_{2,1}), F(v_{2,2}) = a \)

\(F(v_{2,3}) \neq F(v_{2,2}), F(v_{2,3}) = b \)

\(F(v_{3,1}) \neq F(v_{2,3}), F(v_{3,1}) = a \)

\(F(v_{3,2}) \neq F(v_{3,1}), F(v_{3,2}) = b \)
Since $F(v_{1,1}) \neq F(v_{3,3})$, this is a contradiction.

Therefore, $\sigma_E(J_{3,3}) > 2$.

The edge function given in Figure 4.8 shows that $\sigma_E(J_{3,3}) = 3$.

4.9 Theorem: $\sigma_E(J_{3,4}) = 3$.

Proof: Let $G = J_{3,4}$ where $V(G) = \{v\} \cup \{v_{i,j} : 1 \leq i \leq 4; 1 \leq j \leq 3\}$ and $E(G) = \{v_{i,j}v_{i,j+1} : 1 \leq i \leq 4; 1 \leq j \leq 2\} \cup \{v_{i,3}v_{i+1,1} : 1 \leq i \leq 3\} \cup \{v_{4,3}v_{1,1}\} \cup \{vv_{i,1} : 1 \leq i \leq 4\}$.

101
First let us prove that $\sigma_E(G) > 1$.

Suppose $\sigma_E(G) = 1$.

Then there exists an optimal edge function f and its corresponding edge sum function F such that $G \cup K_2$ is an edge sum graph. Let w_1w_2 be the K_2 component of $G \cup K_2$. Since G is triangle free and has no pendent vertex, F is an outer edge sum function.

That is, $F(u) = f(w_1w_2) = a$ (say) for all $u \in V$

\[
F(v_{1,2}) = f(v_{1,1}v_{1,2}) + f(v_{1,2}v_{1,3}) = a
\]

\[
F(v_{1,3}) = f(v_{1,2}v_{1,3}) + f(v_{1,3}v_{2,1}) = a
\]

That is, $f(v_{1,1}v_{1,3}) = f(v_{1,3}v_{2,1})$

This is not possible as f is a bijection. Hence $\sigma_E(G) > 1$.

Suppose $\sigma_E(G) = 2$.

Then there exists an optimal edge function f and an optimal edge sum function F such that $G \cup 2K_2$ is an edge sum graph. Let w_1w_2 and w_3w_4 be the edges of the K_2 component of $G \cup 2K_2$.

Let $f(w_1w_2) = z$ and $f(w_3w_4) = y$ where $z = 2x$.

Let $f(v_{1,1}v_{1,2}) = x - b_1 \Rightarrow f(v_{1,2}v_{1,3}) = x + b_1$

$f(v_{1,2}v_{1,3}) = x + b_1 \Rightarrow f(v_{1,3}v_{2,1}) = y - x - b_1$
\[
f(v_{2,2}v_{2,3}) = x - b_2 \Rightarrow f(v_{2,3}v_{3,1}) = x + b_2
\]
\[
f(v_{2,2}v_{2,3}) = x - b_2 \Rightarrow f(v_{2,1}v_{2,2}) = y - x + b_2
\]
\[
f(v_{3,1}v_{3,2}) = x - b_3 \Rightarrow f(v_{3,2}v_{3,3}) = x + b_3
\]
\[
f(v_{3,2}v_{3,3}) = x + b_3 \Rightarrow f(v_{3,3}v_{4,1}) = y - x - b_3
\]
\[
f(v_{4,2}v_{4,3}) = x - b_4 \Rightarrow f(v_{4,3}v_{1,1}) = x + b_4
\]
\[
f(v_{4,2}v_{4,3}) = x - b_4 \Rightarrow f(v_{4,1}v_{4,2}) = y - x + b_4
\]

Let \(f(v_{1,1}) = x_1 \)

\(f(v_{2,1}) = x_2 \)

\(f(v_{3,1}) = x_3 \)

\(f(v_{4,1}) = x_4 \)

Suppose

\[
F(v_{1,2}) = F(v_{2,1}) = F(v_{2,3}) = F(v_{3,2}) = F(v_{4,1}) = F(v_{4,3}) = 2x \text{ and}
\]
\[
F(v_{1,1}) = F(v_{1,3}) = F(v_{2,2}) = F(v_{3,1}) = F(v_{3,3}) = F(v_{4,2}) = y
\]
\[
F(v_{1,1}) = f(v_{1,1}) + f(v_{4,3}v_{1,1}) + f(v_{1,1}v_{1,2}) = y
\]
\[
\Rightarrow x_1 + 2x - b_1 + b_4 = y
\]
\[
\Rightarrow x_1 = y - 2x + b_1 - b_4
\]
\[
F(v_{2,1}) = f(v_{2,1}) + f(v_{1,3}v_{2,1}) + f(v_{1,1}v_{2,2}) = 2x
\]
\[
\Rightarrow x_2 + 2y - 2x - b_1 + b_2 = 2x
\]
\[x_2 = 4x - 2y + b_1 - b_2 \]

\[F(v_{3,1}) = f(vv_{3,1}) + f(v_{2,3}v_{3,1}) + f(v_{3,1}v_{3,2}) = y \]

\[x_3 + 2x + b_2 - b_3 = y \]

\[x_3 = y - 2x + b_3 - b_2 \]

\[F(v_{4,1}) = f(vv_{4,1}) + f(v_{3,3}v_{4,1}) + f(v_{4,1}v_{4,2}) = 2x \]

\[x_4 + 2y - 2x - b_3 + b_4 = 2x \]

\[x_4 = 4x - 2y + b_3 - b_4 \]

\[F(v) = f(vv_{1,1}) + f(vv_{2,1}) + f(vv_{3,1}) + f(vv_{4,1}) \]

\[= x_1 + x_2 + x_3 + x_4 \]

Case (i)

If \(F(v) = y \) where \(y < 2x \)

Let \(2x - y = a \)

Therefore, \(a = 2x - y > 2x \)

Now \(x_1 = b_1 - b_4 - a \Rightarrow b_1 > a + b_4 \)

\[b_1 - b_4 > a \]

\(x_3 = b_3 - b_2 - a \Rightarrow b_3 > a + b_2 \)

\[b_3 - b_2 > a \]

\(x_2 = 2a + b_1 - b_2 \)

\(x_4 = 2a + b_3 - b_4 \)

\(x_2 + x_4 = 4a + b_1 - b_2 + b_3 - b_4 \)

104
\[= 4a + b_1 - b_4 + b_3 - b_2 \]
\[> 4a + a + a = 6a \]
\[x_1 + x_2 + x_3 + x_4 > x_1 + x_3 + 6a \]
\[> x_1 + x_3 + 12x \text{ (since } a > 2x) \]
\[> 12x \]

This is a contradiction.

Case (ii)

If \(F(v) = 2x \) where \(2x < y \)

Let \(y - 2x = b \)

Therefore \(b > y > 2x \)

\[x_1 = b + b_1 - b_4 \]
\[x_3 = b + b_3 - b_2 \]
\[x_2 = b_1 - b_2 - 2b \]
\[\implies b_1 - b_2 > 2b \]
\[x_4 = b_3 - b_4 - 2b \]
\[\implies b_3 - b_4 > 2b \]
\[x_1 + x_3 = 2b + b_1 - b_2 + b_3 - b_4 \]
\[> 2b + 2b + 2b \]
\[= 6b > y > 2x \]

This is a contradiction.

\[y \geq x_1 + x_2 + x_3 + x_4 > x_1 + x_3 > 6b > y \]
Hence $\sigma_E(G) > 2$.

The edge function given in Figure 4.9 shows that $\sigma_E(J_{3,4}) = 3$.

4.4 Definition: The Crown graph s^0_n for any integer $n \geq 3$ is the graph with vertex set $V = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n, w_1, w_2\}$ and the edge set $E = \{u_i v_j : 1 \leq i, j \leq n \text{ for } i \neq j\}$. s^0_n is therefore equivalent to the complete bipartite graph $K_{n,n}$ with horizontal edges viz. $\{u_i v_i : 1 \leq i \leq n\}$ removed.
4.10 Theorem: $\sigma_E(s_n^0) = 1$ for $n \geq 3$.

Proof: Let $G = s_n^0 \cup K_2$ where $V(G) = \{u_i, v_i : 1 \leq i \leq n\} \cup \{w_1, w_2\}$ and $E(G) = \{u_i v_j : 1 \leq i, j \leq n; i \neq j\} \cup \{w_1 w_2\}$. Let $x = 2^{(n-2)^2+2}$.

The edge function matrix $A = (a_{i,j})$ of order n is defined as follows:

$$a_{i,j} = \begin{cases} 0 & 1 \leq i = j \leq n \\ x + (n-2)2^{(i-1)+(j-1)(n-2)} & 1 \leq i < j \leq n-1 \\ x + (n-2)2^{(i-2)+(j-1)(n-2)} & 1 \leq j < i \leq n-1 \\ y - (n-2) \left(2^{(j-1)(n-2)} \sum_{i=1}^{j-1} 2^{(i-1)} + 2^{(j-1)(n-2)} \sum_{i=j+1}^{n-1} 2^{(i-2)} \right) & i = n \text{ and } 1 \leq j \leq n-1 \\ y - (n-2) \left(2^{(i-2)} \sum_{j=1}^{i-1} 2^{(j-1)(n-2)} + 2^{(i-1)} \sum_{j=i+1}^{n-1} 2^{(j-1)(n-2)} \right) & 1 \leq i \leq n-1 \text{ and } j = n \\ \end{cases}$$

$$a_{i,n} = y + (n-2)x - \sum_{j=1}^{n-1} a_{i,j} = y + (n-2)x - \sum_{j=1}^{i-1} a_{i,j} - \sum_{j=i+1}^{n-1} a_{i,j}$$

$$= y + (n-2)x - \sum_{j=1}^{i-1} \left(x + (n-2)2^{(i-2)+(j-1)(n-2)} \right)$$

$$- \sum_{j=i+1}^{n-1} \left(x + (n-2)2^{(i-1)+(j-1)(n-2)} \right)$$

$$= y - (n-2) \left(2^{(i-2)} \sum_{j=1}^{i-1} 2^{(j-1)(n-2)} + 2^{(i-1)} \sum_{j=i+1}^{n-1} 2^{(j-1)(n-2)} \right)$$
\[a_{n,j} = y + (n-2)x - \sum_{i=1}^{n-1} a_{i,j} = y + (n-2)x - \sum_{i=1}^{j-1} a_{i,j} - \sum_{i=j+1}^{n-1} a_{i,j} \]

\[= y + (n-2)x - \sum_{i=1}^{j-1} \left(x + (n-2)2^{(i-1)+(j-1)(n-2)} \right) \]

\[- \sum_{j=i+1}^{n-1} \left(x + (n-2)2^{(i-2)+(j-1)(n-2)} \right) \]

\[= y - (n-2) \left(2^{(j-1)(n-2)} \sum_{i=1}^{j-1} 2^{(i-1)} + 2^{(j-1)(n-2)} \sum_{i=j+1}^{n-1} 2^{(i-2)} \right) \]

where \(y = x + 2^{(n-1)(n-2)} - 1 \)

Let \(S = \{ a_{i,j} : 1 \leq i, j \leq n \} \cup \{ y + (n-2)x \} \)

where \(x = 2^{(n-2)^2+2} \), \(y = x + 2^{(n-1)(n-2)} - 1 \).

The edge function \(f : E \to S \) is defined as

\[f(u_i v_i) = a_{i,j} \text{ for } 1 \leq i, j \leq n \text{ and } f(w_1 w_2) = (n-2)x + y. \]

The corresponding edge sum function is defined as follows:

For \(1 \leq i \leq n-1; \)

\[F(u_i) = \sum_{j=1}^{n} f(u_i v_j) \]

\[= \sum_{j=1}^{i-1} a_{i,j} + \sum_{j=i+1}^{n-1} a_{i,j} + a_{i,n} \]

\[= \sum_{j=1}^{i-1} \left(x + (n-2)2^{(i-2)+(j-1)(n-2)} \right) \]

108
\[+ \sum_{j=i+1}^{n-1} \left(x + (n - 2)2^{(i-1)+(j-1)(n-2)} \right)\]

\[+ y - (n - 2) \left(2^{(i-2)} \sum_{j=1}^{i-1} \left(2^{(j-1)(n-2)} \right) + 2^{(i-1)} \sum_{j=i+1}^{n-1} \left(2^{(j-1)(n-2)} \right) \right)\]

\[= y + (n - 2)x + (n - 2) \left(2^{(i-2)} \sum_{j=1}^{i-1} \left(2^{(j-1)(n-2)} \right) + 2^{(i-1)} \sum_{j=i+1}^{n-1} \left(2^{(j-1)(n-2)} \right) \right)\]

\[= y + (n - 2)x\]

For \(1 \leq j \leq n - 1;\)

\[F(v_j) = \sum_{i=1}^{n-1} a_{i,j} + a_{n,j} = \sum_{i=1}^{j-1} a_{i,j} + \sum_{i=j+1}^{n-1} a_{i,j} + a_{n,j}\]

\[= \sum_{i=1}^{j-1} \left(x + (n - 2)2^{(i-1)+(j-1)(n-2)} \right)\]

\[+ \sum_{i=j+1}^{n-1} \left(x + (n - 2)2^{(i-2)+(j-1)(n-2)} \right)\]

\[+ y - (n - 2) \left(2^{(j-1)(n-2)} \sum_{i=1}^{j-1} \left(2^{(i-1)} \right) + 2^{(j-1)(n-2)} \sum_{i=j+1}^{n-1} \left(2^{(i-2)} \right) \right)\]

\[= y + (n - 2)x + (n - 2) \left(2^{(j-1)(n-2)} \sum_{i=1}^{j-1} \left(2^{(i-1)} \right) + 2^{(j-1)(n-2)} \sum_{i=j+1}^{n-1} \left(2^{(i-2)} \right) \right)\]

\[= y + (n - 2)x\]
\[F(u_n) = \sum_{j=1}^{n} f(u_n v_j) \] for \(1 \leq i \leq n - 1 \)

\[= \sum_{j=1}^{n} a_{nj} \]

\[= \sum_{j=1}^{n-1} a_{nj} + a_{nn} \]

\[= \sum_{j=1}^{n-1} a_{nj} + 0 \]

\[= \sum_{j=1}^{n-1} \left(y - (n - 2) \left(2^{(j-1)} \sum_{i=1}^{j-1} \left(2^{(j-1)(n-2)} \right) + 2^{(j-2)} \sum_{i=j+1}^{n-1} \left(2^{(j-1)(n-2)} \right) \right) \right) \]

\[= (n - 1)y - (n - 2) \left(2^{(n-1)(n-2)} - 1 \right) \]

\[= (n - 2)x + y. \]

Similarly, \(F(v_n) = (n - 2)x + y. \)

\[F(w_1) = F(w_2) = f(w_1 w_2) = (n-2)x + y. \]

We have got that \(F(v) = f(w_1 w_2) = (n-2)x + y \) for all the vertices \(v \in V \). Hence \(F \) is into \(S \). The row sums and column sums are equal and the column value is \(((n - 2)x + y) \). The elements of \(S \) are such that except for the row sums and column sums of \(A_{n \times n} \), no other sum of any number of elements is in \(S \). Hence \(S_n^0 \cup K_2 \) with this edge function becomes an edge sum graph. That is,
\(\sigma_E(s_n^0) \leq 1 \) for \(n \geq 3 \). Since \(K_2 \) is the only connected edge sum graph, we get that \(\sigma_E(s_n^0) = 1 \) for \(n \geq 3 \).

The following \(6 \times 6 \) matrix gives edge function of \(s_6^0 \).

\[
\begin{bmatrix}
0 & x + 4(2^4) & \cdots & x + 4(2^{16}) & y - 4(2^4 + 2^8 + 2^{12} + 2^{16}) \\
x + 4(2^0) & 0 & \cdots & x + 4(2^{17}) & y - 4(2^6 + 2^9 + 2^{13} + 2^{17}) \\
x + 4(2^1) & x + 4(2^5) & \cdots & x + 4(2^{18}) & y - 4(2^1 + 2^5 + 2^{14} + 2^{18}) \\
x + 4(2^2) & x + 4(2^6) & \cdots & x + 4(2^{19}) & y - 4(2^2 + 2^6 + 2^{10} + 2^{19}) \\
x + 4(2^3) & x + 4(2^7) & \cdots & 0 & y - 4(2^3 + 2^7 + 2^{11} + 2^{15}) \\
y - 4(2^0 + \cdots + 2^3) & y - 4(2^4 + \cdots + 2^7) & \cdots & y - 4(2^{16} + \cdots + 2^{19}) & 0 \\
\end{bmatrix}
\]

where \(x = 2^{18} \), \(y = x + 2^{20} - 1 \).