List of Tables

Table 3.1	Forest characteristics of the tropical and montane sub-tropical forest ecosystems	44
Table 4.1	Allometric models used for estimation of biomass for broad-leaved tree species in the tropical and montane sub-tropical forest ecosystem	69
Table 5.1	Tree species composition, density, frequency, basal area, IVI and A/F ratio in tropical old-growth broad-leaved forest of Nongkhyllum wildlife sanctuary	74
Table 5.2	Tree species composition, density, frequency, basal area, IVI and A/F ratio in tropical regenerating broad-leaved forest of Nongkhyllum wildlife sanctuary	77
Table 5.3	Tree species composition, density, frequency, basal area IVI and A/F ratio in tropical teak (*Tectona grandis*) plantation forest of Nongkhyllum wildlife sanctuary	78
Table 5.4	Tree species composition, density, frequency, basal area, IVI and A/F ratio in tropical sal (*Shorea robusta*) plantation forest of Nongkhyllum wildlife sanctuary	79
Table 5.5	Bamboo species composition, density, frequency, basal area, IVI and A/F ratio in tropical mixed bamboo forest of Nongkhyllum wildlife sanctuary	82
Table 5.6	Tree species composition, density, frequency, basal area, IVI and A/F ratio in tropical mixed bamboo forest of Nongkhyllum wildlife sanctuary	82
Table 5.7	Community indices for different tropical forest types of Nongkhyllum wildlife sanctuary (TObF= Tropical old-growth broad-leaved forest; TRBF=Tropical regenerating broad-leaved forest; TTPF=Tropical teak plantation forest; TSPF=Tropical sal plantation forest; TMBF=Tropical mixed bamboo forest)	84
Table 5.8	Proportion of soil particles and soil texture class in different tropical forest types of Nongkhyllum wildlife sanctuary	85
Table 5.9	Bulk density (g cm$^{-3}$) and porosity (%) in surface (0-10 cm) and sub-surface (10-20 cm) soil layers in different forest types in tropical landscape of Nongkhyllum wildlife sanctuary. The values are mean (±SE) of five replicate samples	87
Table 5.10	Three way ANOVA showing effect of forest type, season and soil depth on soil moisture content (%) in different forest types in tropical landscape of Nongkhyllum wildlife sanctuary (*p<0.01, **p<0.01)	89
Table 5.11	Three-way ANOVA showing the effect of forest type, season and depth on total kjeldahl nitrogen in different forest types in tropical landscape of Nongkhyllum wildlife sanctuary (**p<0.01)	92
Table 5.12	Three-way ANOVA showing the effect of forest type, season and depth on available Phosphorus in different forest types in tropical landscape of Nongkhyllum wildlife sanctuary (**p<0.01)	93
Table 5.13	Three-way ANOVA showing the effect of forest type, season and depth on exchangeable Potassium in different forest types in tropical landscape of Nongkhyllum wildlife sanctuary (*p<0.01, **p<0.01)	95
Table 5.14	Three-way ANOVA showing effect of forest types, season and soil depth	97
on soil organic carbon in different forest types in tropical landscape of Nongkhyllem wildlife sanctuary (*P<0.01, **p<0.01)

Table 5.15 Total SOC (Mg ha⁻¹) upto 1 m in different seasons in all tropical forest types of Nongkhyllem wildlife sanctuary

Table 5.16 Three-way ANOVA showing effect of forest types, season and soil depth on soil organic carbon upto 1 m depth in different forest types in tropical landscape of Nongkhyllem wildlife sanctuary (*P<0.01, **p<0.01)

Table 5.17 Soil organic carbon, total kjeldahl nitrogen and C/N ratio in soils in different forest types in tropical landscape of Nongkhyllem wildlife sanctuary. The values are mean of 12 seasons and five replicates each

Table 5.18 Three-way ANOVA showing the effect of forest type, season and depth on microbial biomass carbon in different forest types in tropical landscape of Nongkhyllem wildlife sanctuary (*p<0.01, **p<0.01)

Table 5.19 Percentage contribution of microbial biomass carbon to soil organic carbon in different forest types in tropical landscape of Nongkhyllem wildlife. The seasons are mean of three years from 2005 to 2008

Table 5.20 Litterfall by different components (Mg ha⁻¹yr⁻¹) and their carbon content in different forest types in tropical landscape of Nongkhyllem wildlife sanctuary during 2005-2008. The values are mean (±SE) of 12 seasons and five replicate samples. The figures in parenthesis represent the percentage contribution of litter components to total litter

Table 5.21 Annual decay constant (k) of litter in different forest types in tropical landscape of Nongkhyllem wildlife sanctuary

Table 5.22 Litter turnover rate (kL yr⁻¹) in different forest types in tropical landscape of Nongkhyllem wildlife sanctuary

Table 5.23 Litter turnover time (t yr⁻¹) in different forest types in tropical landscape of Nongkhyllem wildlife sanctuary

Table 5.24 Carbon content (%) in different tree components in tropical landscape of Nongkhyllem wildlife sanctuary

Table 5.25 Aboveground biomass and biomass carbon in different diameter classes of old growth broad-leaved forest of tropical landscape of Nongkhyllem wildlife sanctuary

Table 5.26 Belowground biomass and carbon in different diameter classes of old-growth broad-leaved forest of tropical landscape of Nongkhyllem wildlife sanctuary

Table 5.27 Herb and shrub biomass and carbon and % contribution to total AGB in different forest types of tropical landscape of Nongkhyllem wildlife sanctuary

Table 5.28 Tree aboveground biomass and carbon in different diameter classes of regenerating broad-leaved forest of tropical landscape of Nongkhyllem wildlife sanctuary

Table 5.29 Belowground biomass and carbon in different diameter classes of regenerating broad-leaved forest of tropical landscape of Nongkhyllem wildlife sanctuary

Table 5.30 Aboveground biomass and carbon in different diameter classes of teak
Table 5.31 Belowground biomass and carbon in different diameter classes of teak (*Tectona grandis*) plantation forest of tropical landscape of Nongkhyllem wildlife

Table 5.32 Aboveground biomass and carbon in different diameter classes of sal (*Shorea robusta*) plantation forest of tropical landscape of Nongkhyllem wildlife

Table 5.33 Belowground biomass and carbon in different diameter classes of sal (*Shorea robusta*) plantation forest of tropical landscape of Nongkhyllem wildlife

Table 5.34 Dry weight (kg culm$^{-1}$) of different components of *Dendrocalamus hamiltonii* used for developing regression models (AGB=aboveground biomass)

Table 5.35 Dry weight (kg culm$^{-1}$) of different components of *Teinostachyum dullooae* used for developing regression models (AGB=aboveground biomass)

Table 5.36 Regression coefficients (a, b, c and d), coefficient of determination (R^2), standard deviation (SD), sum of square error (SSE), mean square error (MSE) and root mean square error (RMSE) in respect of the models for biomass estimation of individual culm components and total biomass of *Dendrocalamus hamiltonii* Nees & Arn. ex Munro in Nongkhyllem wildlife sanctuary. The model is of the form Log\(Y\) = a + b log\(D\) + c (log\(D\))^2 + d (log\(D\))^3, where \(Y\) = biomass of individual culm components/BGB/AGB/total culm expressed in dry weight (kg culm$^{-1}$) and \(D\) = diameter at breast height (n=54). The model validity is between 5.02 cm and 15.2 cm DBH

Table 5.37 Regression coefficients (a, b, c and d), coefficient of determination (R^2), standard deviation (SD), sum of square error (SSE), mean square error (MSE) and root mean square error (RMSE) in respect of the models for biomass estimation of individual culm components and total biomass of *Teinostachyum dullooae* Gamble in Nongkhyllem wildlife sanctuary. The model is of the form Log\(Y\) = a + b log\(D\) + c (log\(D\))^2 + d (log\(D\))^3, where \(Y\) = biomass of individual culm components/BGB/AGB/total culm expressed in dry weight (kg culm$^{-1}$) and \(D\) = diameter at breast height (n=26). The model validity is between 2.6 cm and 6.7 cm DBH

Table 5.38 Aboveground biomass and carbon in different diameter classes of mixed bamboo forest of tropical landscape of Nongkhyllem wildlife sanctuary. A. Tree species biomass and B. Bamboo species biomass

Table 5.39 Belowground biomass and carbon in different diameter classes of mixed bamboo forest of tropical landscape of Nongkhyllem wildlife. A. Tree species biomass and B. Bamboo species biomass

Table 5.40 Three-way ANOVA showing the effect of forest type, season and depth on soil respiration in different forest types in tropical landscape of Nongkhyllem wildlife sanctuary (**p<0.01**)

Table 5.41 Total ecosystem, above and belowground biomass, carbon content and net primary production of tropical old-growth broad-leaved forest of Nongkhyllem wildlife sanctuary

Table 5.42 Total ecosystem, above and belowground biomass, carbon content and net
primary production of tropical regenerating broad-leaved forest of Nongkhyllem wildlife sanctuary

Table 5.43 Total ecosystem, above and belowground biomass, carbon content and net primary production of tropical teak (*Tectona grandis*) plantation forest of Nongkhyllem wildlife sanctuary

Table 5.44 Total ecosystem, above and belowground biomass, carbon content and net primary production of tropical sal (*Shorea robusta*) plantation forest of Nongkhyllem wildlife sanctuary

Table 5.45 Total ecosystem, above and belowground biomass, carbon content and net primary production of tropical mixed bamboo forest of Nongkhyllem wildlife sanctuary

Table 6.1 Tree species composition, density, frequency, basal area, IVI and A/F ratio in montane sub-tropical old-growth broad-leaved forest of Upper Shillong

Table 6.2 Tree species composition, density, frequency, basal area, IVI and A/F ratio in montane sub-tropical old-growth pine (*Pinus kesiya*) forest of Upper Shillong

Table 6.3 Tree species composition, density, frequency, basal area, IVI and A/F ratio in montane sub-tropical regenerating pine (*Pinus kesiya*) forest of Upper Shillong

Table 6.4 Tree species composition, density, frequency, basal area, IVI and A/F ratio in montane sub-tropical regenerating broad-leaved forest of Upper Shillong

Table 6.5 Community indices for different montane sub-tropical forest types of Upper Shillong (SOBF= sub-tropical old-growth broad-leaved forest; SOPF= sub-tropical old-growth pine forest; SRPF= sub-tropical regenerating pine forest; SRBF= sub-tropical regenerating broad-leaved forest)

Table 6.6 Proportion of soil particles and soil texture class in different montane sub-tropical forest types of Upper Shillong

Table 6.7 Bulk density (g cm\(^{-3}\)) and porosity (%) in surface (0-10 cm) and sub-surface (10-20 cm) soil layers in different forest types in montane sub-tropical landscape of Upper Shillong. The values are mean (±SE) of five replicate samples

Table 6.8 Three-way ANOVA showing effect of forest type, season and soil depth on soil moisture content (%) in different forest types in montane sub-tropical landscape of Upper Shillong (*p<0.01, **p<0.001*)

Table 6.9 Three-way ANOVA showing the effect of forest type, season and depth on total kjeldahl nitrogen in different forest types in montane sub-tropical landscape of Upper Shillong (**p<0.01*)

Table 6.10 Three-way ANOVA showing the effect of forest type, season and depth on available Phosphorus in different forest types in montane sub-tropical landscape of Upper Shillong (**p<0.01*)

Table 6.11 Three-way ANOVA showing the effect of forest type, season and depth on exchangeable Potassium in different forest types in montane sub-tropical landscape of Upper Shillong (*p<0.01, **p<0.001*)

Table 6.12 Three-way ANOVA showing effect of forest types, season and soil depth on soil organic carbon in different forest types in montane sub-tropical landscape of Upper Shillong (**p<0.01, **p<0.001*)

Table 6.13 Total SOC (Mg ha\(^{-1}\)) upto 1 m in different seasons in all montane sub-
tropical forest types of Upper Shillong

Table 6.14 Three-way ANOVA showing effect of forest type, season and soil depth on soil organic carbon in different forest types in montane sub-tropical landscape of Upper Shillong (*p<0.01, **p<0.001)

Table 6.15 Soil organic carbon, total kjeldahl nitrogen and C/N ratio in soils in different forest types in montane sub-tropical landscape of Upper Shillong. The values are mean of 12 seasons and five replicates each

Table 6.16 Three-way ANOVA showing the effect of forest type, season and depth on microbial biomass carbon in different forest types in montane sub-tropical landscape of Upper Shillong (*p<0.01, **p<0.001)

Table 6.17 Percentage contribution of microbial biomass carbon to soil organic carbon content in different forest types in montane sub-tropical landscape of Upper Shillong. The seasons are mean of three years for the year 2005 to 2008

Table 6.18 Litterfall by different components (Mg ha\(^{-1}\) yr\(^{-1}\)) and their carbon content in different forest types in montane sub-tropical landscape of Upper Shillong during 2005-2008. The values are mean (±SE) of 12 seasons and five replicate samples. The figures in parenthesis represent the percentage contribution of litter components to total litter

Table 6.19 Annual decay constant (k) of litter in different forest types in montane sub-tropical landscape of Upper Shillong

Table 6.20 Litter turnover rate (k, yr\(^{-1}\)) in different forest types in montane sub-tropical landscape of Upper Shillong

Table 6.21 Litter turnover time (t yr\(^{-1}\)) in different forest types in montane sub-tropical landscape of Upper Shillong

Table 6.22 Carbon content (%) in different tree components of montane sub-tropical landscape of Upper Shillong

Table 6.23 Aboveground biomass and carbon in different diameter classes of old-growth broad-leaved forest in montane sub-tropical landscape of Upper Shillong

Table 6.24 Belowground biomass and carbon in different diameter classes of old-growth broad-leaved forest in montane sub-tropical landscape of Upper Shillong

Table 6.25 Herb and shrub biomass and carbon and % contribution to total AGB in different forest types in montane sub-tropical landscape of Upper Shillong

Table 6.26 Dry weight (kg tree\(^{-1}\)) of different components of old-growth *Pinus kesiya* trees used for developing regression models (AGB=aboveground biomass, BGB=total belowground biomass)

Table 6.27 Regression coefficients (a, b, c and d), coefficient of determination (R\(^2\)), standard deviation (SD), sum of square error (SSE), mean square error (MSE) and root mean square error (RMSE) in respect of the models for biomass estimation of individual tree components and total tree biomass in old-growth pine forest of Upper Shillong. The model is of the form Log(Y) = a + b logD + c (logD)\(^2\) + d (logD)\(^3\), where Y=b biomass of individual tree components/BGB/AGB/total tree expressed in dry weight (kg tree\(^{-1}\)) and D = diameter at breast height (n=40). The model validity is between 9 cm and 63 cm DBH.

Table 6.28 Aboveground biomass and carbon in different diameter classes of old-
growth Pinus kesiya forest in montane sub-tropical landscape of Upper Shillong

Table 6.29 Belowground biomass and carbon in different diameter classes of old-growth Pinus kesiya forest in montane sub-tropical landscape of Upper Shillong

Table 6.30 Dry weight (kg tree^{-1}) of different components of regenerating pine trees of Upper Shillong used for developing regression models (AGB=aboveground biomass, BGB=total belowground biomass)

Table 6.31 Regression coefficients (a, b, c and d), coefficient of determination (R^2), standard deviation (SD), sum of square error (SSE), mean square error (MSE) and root mean square error (RMSE) in respect of the models for biomass estimation of individual tree components and total tree biomass in montane sub-tropical regenerating pine forest of Upper Shillong. The model is of the form Log(Y) = a + b logD + c (logD)^2 + d (logD)^3, where Y= biomass of individual tree components/BGB/AGB/total tree expressed in dry weight (kg tree^{-1}) and D = diameter at breast height (n=13). The model validity is between 5 cm and 15 cm DBH

Table 6.32 Aboveground biomass and carbon in different diameter classes of regenerating Pinus kesiya forest in montane sub-tropical landscape of Upper Shillong

Table 6.33 Belowground biomass and carbon in different diameter classes of regenerating Pinus kesiya forest in montane sub-tropical landscape of Upper Shillong

Table 6.34 Dry weight (kg tree^{-1}) of different components of regenerating broad-leaved trees of Upper Shillong used for developing regression models (AGB=aboveground biomass, BGB=belowground biomass)

Table 6.35 Regression coefficients (a, b, c and d), coefficient of determination (R^2), standard deviation (SD), sum of square error (SSE), mean square error (MSE) and root mean square error (RMSE) in respect of the models for biomass estimation of individual tree components and total tree biomass in regenerating broad-leaved forest of Upper Shillong. The model is of the form Log(Y) = a + b logD + c (logD)^2 + d (logD)^3, where Y= biomass of individual tree components/BGB/AGB/total tree expressed in dry weight (kg tree^{-1}) and D = diameter at breast height (n=28). The model validity is between 1.3 cm and 13.6 cm DBH

Table 6.36 Aboveground biomass and carbon in different diameter classes of regenerating broad-leaved forest in montane sub-tropical landscape of Upper Shillong

Table 6.37 Belowground biomass and carbon in different diameter classes of regenerating broad-leaved forest in montane sub-tropical landscape of Upper Shillong

Table 6.38 Three-way ANOVA showing the effect of forest type, season and depth on soil respiration in different forest types in montane sub-tropical landscape of Upper Shillong (*p<0.01, **p<0.01)

Table 6.39 Total ecosystem, above and belowground biomass, carbon content and net primary production of old-growth broad-leaved forest in montane sub-tropical landscape of Upper Shillong

Table 6.40 Total ecosystem, above and belowground biomass, carbon content and net primary production of old-growth broad-leaved forest in montane sub-tropical landscape of Upper Shillong
primary production of old-growth pine forest in montane sub-tropical landscape of Upper Shillong

Table 6.41 Total ecosystem, above and belowground biomass, carbon content and net primary production of regenerating pine forest in montane sub-tropical landscape of Upper Shillong

Table 6.42 Total ecosystem, above and belowground biomass, carbon content and net primary production of regenerating broad-leaved forest in montane sub-tropical landscape of Upper Shillong