TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>ENGINEERING OPTIMISATION:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HISTORICAL REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>AERODYNAMIC SHAPE OPTIMISATION:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHODOLOGY OVERVIEW</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Methods of Geometric Representation</td>
<td></td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Discrete Points Approach</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Partial Differential Equations Approach</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.3.1.3 Polynomial Approach</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.3.1.4 Bezier Parameterisation</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.3.1.5 Hicks – Henne Bump Functions</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.3.1.6 Joukowski Transformation</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.3.1.7 Parametric Section [PARSEC]</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Computation of Flow Field</td>
<td>13</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Methods of Engineering Optimisation</td>
<td>14</td>
</tr>
<tr>
<td>1.3.3.1</td>
<td>Gradient Optimisation Approaches</td>
<td>15</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>1.3.3.2</td>
<td>Stepping Search Method</td>
<td>16</td>
</tr>
<tr>
<td>1.3.3.3</td>
<td>Steepest Descent</td>
<td>17</td>
</tr>
<tr>
<td>1.3.3.4</td>
<td>Random Search Methods:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random walk</td>
<td>17</td>
</tr>
<tr>
<td>1.3.3.5</td>
<td>Simulated Annealing Approach</td>
<td>18</td>
</tr>
<tr>
<td>1.3.3.6</td>
<td>Simplex Simulated Annealing</td>
<td>19</td>
</tr>
<tr>
<td>1.3.3.7</td>
<td>Monte Carlo Approach</td>
<td>19</td>
</tr>
<tr>
<td>1.3.3.8</td>
<td>Evolutionary Algorithms</td>
<td>20</td>
</tr>
<tr>
<td>1.3.3.9</td>
<td>Genetic Algorithm</td>
<td>21</td>
</tr>
<tr>
<td>1.4</td>
<td>STUDY OF AIRFOILS</td>
<td>24</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Airfoil Nomenclature</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1.4.1.1 Mean Camber line</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.4.1.2 Leading and Trailing edges</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.4.1.3 Chord</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.4.1.4 Camber</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1.4.1.5 Thickness</td>
<td>26</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Four – Digit Airfoils</td>
<td>26</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Airfoil Characteristics</td>
<td>26</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Types of Airfoils</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1.4.4.1 Cambered Airfoil</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1.4.4.2 Symmetric Airfoil</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1.4.4.3 Super critical Airfoil</td>
<td>29</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Centre of Pressure</td>
<td>30</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Aerodynamic Center</td>
<td>30</td>
</tr>
<tr>
<td>1.4.7</td>
<td>Kutta Condition</td>
<td>30</td>
</tr>
<tr>
<td>1.4.8</td>
<td>Pressure Distribution on an Airfoil</td>
<td>31</td>
</tr>
<tr>
<td>1.5</td>
<td>COMPUTATIONAL FLUID DYNAMICS:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td>31</td>
</tr>
</tbody>
</table>
CHAPTER NO. | TITLE | PAGE NO.
--- | --- | ---
1.5.1 | Elements of CFD | 32
1.5.2 | Formulating Boundary Conditions | 33
1.6 | THESIS OVERVIEW | 33

2 | LITERATURE SURVEY | 35
2.1 | STEPS IN AERODYNAMIC SHAPE OPTIMISATION | 35
2.2 | PARAMETERISATION | 35
2.3 | SOLVER | 37
2.4 | SURROGATE MODEL | 38
2.5 | OPTIMISATION | 40
2.6 | AIM AND OBJECTIVES | 42

3 | MATHEMATICAL MODELLING OF GEOMETRY | 44
3.1 | INTRODUCTION | 44
3.2 | PARAMETRIC SECTION | 44
3.2.1 | Evaluation of Coefficients | 45
3.2.1.1 | Upper surface | 46
3.2.1.2 | Lower surface | 48
3.3 | SUMMARY | 51

4 | DESIGN OF EXPERIMENTS | 52
4.1 | INTRODUCTION | 52
4.2 | HAMMERSLEY SEQUENCE ALGORITHMS | 55
4.2.1 | Design Parameter and their Bound Values | 56
4.3 | SUMMARY | 58
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>COMPUTER BASED SIMULATIONS</td>
<td>59</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>PANEL METHOD</td>
<td>59</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Limitations in Utilizing Panel Technique</td>
<td>60</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Assumptions made during Analysis in Panel Technique</td>
<td>61</td>
</tr>
<tr>
<td>5.3</td>
<td>LOW FIDELITY DATA</td>
<td>61</td>
</tr>
<tr>
<td>5.4</td>
<td>SUMMARY</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>SURROGATE MODEL CONSTRUCTION</td>
<td>69</td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>69</td>
</tr>
<tr>
<td>6.2</td>
<td>OVERVIEW OF SURROGATE MODEL CONSTRUCTION</td>
<td>70</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Maximum Likelihood Estimation</td>
<td>71</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Cross Validation</td>
<td>72</td>
</tr>
<tr>
<td>6.3</td>
<td>METHODS OF SURROGATE MODEL CONSTRUCTION</td>
<td>74</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Polynomial Regression Model</td>
<td>74</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Radial Basis Function Model</td>
<td>76</td>
</tr>
<tr>
<td>6.4</td>
<td>KRIGING MODEL</td>
<td>77</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Theory</td>
<td>77</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Mathematical Formulation</td>
<td>80</td>
</tr>
<tr>
<td>6.5</td>
<td>CONSTRUCTION OF SURROGATE MODEL FOR LOW FIDELITY C_L</td>
<td>86</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Influence of Theoretical Semivariogram Models on Surrogate Model Accuracy</td>
<td>90</td>
</tr>
<tr>
<td>6.6</td>
<td>K-FOLD CROSS VALIDATION</td>
<td>90</td>
</tr>
<tr>
<td>6.7</td>
<td>SUMMARY</td>
<td>91</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>AERODYNAMIC SHAPE OPTIMISATION</td>
<td>92</td>
</tr>
<tr>
<td>7.1</td>
<td>INTRODUCTION</td>
<td>92</td>
</tr>
<tr>
<td>7.2</td>
<td>PSO OUTLINE</td>
<td>93</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Taxonomy of PSO</td>
<td>95</td>
</tr>
<tr>
<td>7.3</td>
<td>PSO ALGORITHM</td>
<td>101</td>
</tr>
<tr>
<td>7.4</td>
<td>SUMMARY</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>RESULTS AND DISCUSSIONS</td>
<td>104</td>
</tr>
<tr>
<td>8.1</td>
<td>INTRODUCTION</td>
<td>104</td>
</tr>
<tr>
<td>8.2</td>
<td>COMPUTER SIMULATIONS</td>
<td>104</td>
</tr>
<tr>
<td>8.3</td>
<td>INFLUENCE OF THEORETICAL SEMIVARIOGRAMS</td>
<td>106</td>
</tr>
<tr>
<td>8.4</td>
<td>COMPARISON OF CROSS VALIDATION ERROR</td>
<td>107</td>
</tr>
<tr>
<td>8.5</td>
<td>SURROGATE ASSISTED PSO</td>
<td>109</td>
</tr>
<tr>
<td>8.6</td>
<td>EXPERIMENTAL VALIDATION</td>
<td>116</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Wind Tunnel Details</td>
<td>117</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Validation Test</td>
<td>118</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Experimental Results and Analysis</td>
<td>119</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Uncertainties Associated with the Measurement of Aerodynamic Forces</td>
<td>121</td>
</tr>
<tr>
<td>9</td>
<td>PREDICTION OF HIGH FIDELITY DATA</td>
<td>122</td>
</tr>
<tr>
<td>9.1</td>
<td>INTRODUCTION</td>
<td>122</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Spalart-Allmaras Turbulence Model</td>
<td>123</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Computational Grid</td>
<td>124</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Numerical Solution</td>
<td>125</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Numerical Scheme Results</td>
<td>127</td>
</tr>
<tr>
<td>9.2</td>
<td>SURROGATE MODEL FOR ΔC_L</td>
<td>128</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Cross Validation Error for ΔC_L</td>
<td>129</td>
</tr>
<tr>
<td>9.3</td>
<td>SURROGATE MODEL FOR C_D</td>
<td>129</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Cross Validation Error for C_D</td>
<td>131</td>
</tr>
<tr>
<td>9.4</td>
<td>PREDICTION OF HIGH FIDELITY DATA</td>
<td>131</td>
</tr>
<tr>
<td>9.5</td>
<td>SUMMARY</td>
<td>132</td>
</tr>
<tr>
<td>10</td>
<td>CONCLUSIONS AND FUTURE WORK</td>
<td>133</td>
</tr>
<tr>
<td>10.1</td>
<td>CONCLUSIONS</td>
<td>133</td>
</tr>
<tr>
<td>10.2</td>
<td>FUTURE WORK</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 1</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 2</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>154</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Design Parameters and their Range Values for NACA 2411 airfoil</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Design Parameters and their Range Values for NACA 0012 airfoil</td>
<td>58</td>
</tr>
<tr>
<td>8.1</td>
<td>Design Parameters and their Range Values</td>
<td>105</td>
</tr>
<tr>
<td>8.2</td>
<td>PSO Parameters to Control the Optimisation</td>
<td>109</td>
</tr>
<tr>
<td>8.3</td>
<td>Design Parameters and their Optimised Values</td>
<td>114</td>
</tr>
<tr>
<td>8.4</td>
<td>Original vs. Optimised Coefficient of Lift</td>
<td>114</td>
</tr>
<tr>
<td>8.5</td>
<td>Cl vs. AOA Comparison Chart for NACA Original and Optimised Airfoils</td>
<td>115</td>
</tr>
<tr>
<td>8.6</td>
<td>Wind Tunnel Specifications</td>
<td>118</td>
</tr>
<tr>
<td>9.1</td>
<td>Fluid Flow Properties</td>
<td>126</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Proposed Approach</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Typical Aerodynamic Shape Optimisation Process</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Classification of Optimisation Schemes</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Wing Section</td>
<td>24</td>
</tr>
<tr>
<td>1.5</td>
<td>Parameters of an Airfoil</td>
<td>25</td>
</tr>
<tr>
<td>1.6</td>
<td>Variation of Lift coefficient with AOA</td>
<td>27</td>
</tr>
<tr>
<td>1.7</td>
<td>Cambered Airfoil</td>
<td>28</td>
</tr>
<tr>
<td>1.8</td>
<td>Symmetric Airfoil</td>
<td>29</td>
</tr>
<tr>
<td>1.9</td>
<td>Super Critical Airfoil</td>
<td>29</td>
</tr>
<tr>
<td>2.1</td>
<td>ASO Process using Kriging based Surrogate Model</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Parametric Section Control Parameters</td>
<td>45</td>
</tr>
<tr>
<td>5.1</td>
<td>Nodes and Panels</td>
<td>63</td>
</tr>
<tr>
<td>6.1</td>
<td>Theoretical Semivariogram of Spherical Model</td>
<td>85</td>
</tr>
<tr>
<td>6.2</td>
<td>Experimental Semivariogram for low fidelity C_L</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>(NACA 2411 Airfoil)</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Experimental Semivariogram for low fidelity C_L</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>(NACA 0012 Airfoil)</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Flow Chart of PSO</td>
<td>103</td>
</tr>
<tr>
<td>8.1</td>
<td>Theoretical semivariogram models [Low-fidelity C_L]</td>
<td>106</td>
</tr>
<tr>
<td>8.2</td>
<td>Theoretical semivariogram models [Low-fidelity C_L]</td>
<td>107</td>
</tr>
<tr>
<td>8.3</td>
<td>\in_{cv} for C_L Surrogate Model (NACA 2411 Airfoil)</td>
<td>108</td>
</tr>
<tr>
<td>8.4</td>
<td>\in_{cv} for C_L Surrogate Model (NACA 0012 Airfoil)</td>
<td>108</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>8.5</td>
<td>NACA 2411 Original and Optimised Airfoil Geometries</td>
<td>111</td>
</tr>
<tr>
<td>8.6</td>
<td>Pressure Distribution around the Airfoils (NACA 2411)</td>
<td>111</td>
</tr>
<tr>
<td>8.7</td>
<td>NACA 0012 Original and Optimised Airfoil Geometries</td>
<td>112</td>
</tr>
<tr>
<td>8.8</td>
<td>Pressure Distribution around the Airfoils (NACA 0012)</td>
<td>112</td>
</tr>
<tr>
<td>8.9</td>
<td>Convergence of C_L value for NACA 2411 Airfoil</td>
<td>113</td>
</tr>
<tr>
<td>8.10</td>
<td>Convergence of C_L value for NACA 0012 Airfoil</td>
<td>113</td>
</tr>
<tr>
<td>8.11</td>
<td>Computational Time Comparison</td>
<td>115</td>
</tr>
<tr>
<td>8.12</td>
<td>Manufactured Optimised NACA 2411 Airfoil</td>
<td>116</td>
</tr>
<tr>
<td>8.13</td>
<td>Manufactured Optimised NACA 0012 Airfoil</td>
<td>117</td>
</tr>
<tr>
<td>8.14</td>
<td>Comparison Chart for NACA 2411 Airfoil</td>
<td>120</td>
</tr>
<tr>
<td>8.15</td>
<td>Comparison Chart for NACA 0012 Airfoil</td>
<td>120</td>
</tr>
<tr>
<td>9.1</td>
<td>Experimental and theoretical semivariograms for ΔC_L</td>
<td>128</td>
</tr>
<tr>
<td>9.2</td>
<td>\in_{cv} for ΔC_L Surrogate Model</td>
<td>129</td>
</tr>
<tr>
<td>9.3</td>
<td>Experimental and theoretical semivariograms for C_D</td>
<td>130</td>
</tr>
<tr>
<td>9.4</td>
<td>\in_{cv} for C_D Surrogate Model</td>
<td>131</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

α - Angle of attack
$B_r^v(t)$ - Bernstein Polynomials
x^*_j - Best Position of the j^{th} Particle
x^*_d - Best Position of the Whole Swarm
C_L - Coefficient of Lift
C_p - Coefficient of Pressure
C_D - Coefficient of Drag
\hat{c} - Covariance vector
ε_{cv} - Cross Validation Error
ρ - Density
S - Design Space
ΔC_L - Difference in Coefficient of Lift
$V(e_p)$ - Error Variance
e_p - Estimation Error
$E(\varepsilon)$ - Expected Value of the Error
ϕ_ε - Free Stream
ρ_∞ - Free Stream Density
V_∞ - Free Stream Velocity
μ_∞ - Free Stream Dynamic Viscosity
\hat{f} - Function of Linear Estimator
R - Gas Constant
$g(x_i)$ - Gradient of the function $f(x)$
ε - Independent Error
c_1 - Individuality Coefficients
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Isotropic Lag</td>
</tr>
<tr>
<td>λ_{sp}</td>
<td>Lagrange Multiplier</td>
</tr>
<tr>
<td>Y_{xxlo}</td>
<td>Lower Crest Curvature</td>
</tr>
<tr>
<td>Y_{lo}</td>
<td>Lower Crest Point</td>
</tr>
<tr>
<td>R_{lel}</td>
<td>Lower Leading Edge Radius</td>
</tr>
<tr>
<td>M</td>
<td>Mach Number</td>
</tr>
<tr>
<td>y_m</td>
<td>Measured Response</td>
</tr>
<tr>
<td>X</td>
<td>Non-dimensional Chord wise Location</td>
</tr>
<tr>
<td>N_p</td>
<td>Number of Panels</td>
</tr>
<tr>
<td>N</td>
<td>Number of Sample points</td>
</tr>
<tr>
<td>X_{lo}</td>
<td>Position of Lower Crest</td>
</tr>
<tr>
<td>X_{up}</td>
<td>Position of Upper Crest</td>
</tr>
<tr>
<td>N_h</td>
<td>Possible Number of Pairs</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>$\phi_1 & \phi_2$</td>
<td>Random numbers</td>
</tr>
<tr>
<td>R</td>
<td>Range</td>
</tr>
<tr>
<td>Re_x</td>
<td>Reynolds Number</td>
</tr>
<tr>
<td>$C(h)$</td>
<td>Semivariance</td>
</tr>
<tr>
<td>C_f</td>
<td>Skin Friction Coefficient</td>
</tr>
<tr>
<td>c_2</td>
<td>Sociality Coefficients</td>
</tr>
<tr>
<td>ϕ_s</td>
<td>Source Potential</td>
</tr>
<tr>
<td>$q(s)$</td>
<td>Source Strength</td>
</tr>
<tr>
<td>γ</td>
<td>Specific Heat Ratio</td>
</tr>
<tr>
<td>σ</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>λ_{4i}</td>
<td>Step Distance</td>
</tr>
<tr>
<td>V_t</td>
<td>Tangential Velocity</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>ϕ</td>
<td>Total Potential Function</td>
</tr>
<tr>
<td>α_{te}</td>
<td>Trailing Edge Directional Angle</td>
</tr>
</tbody>
</table>
T_{off} - Trailing Edge Offset
β_{te} - Trailing Edge Wedge Angle
y_t - True Value of the Response
I - Turbulent Intensity
\hat{n}_i - Unit vector normal to ith panel
Y_{xxup} - Upper Crest Curvature
Y_{up} - Upper Crest Point
R_{leu} - Upper Leading Edge Radius
$V(\varepsilon)$ - Variance
x_p - Vector of Sample Points
V - Velocity
$v_{j,d}$ - Velocity of the Particle
ϕ_V - Vortex Potential
$\gamma(s)$ - Vortex Strength
τ_w - Wall Shear Stress
$\gamma_l(x_p)$ - Weight Parameter
Y_l - Y Coordinates for the Lower Surface
Y_u - Y Coordinates for the Upper Surface

Abbreviations

ADPSO - Adaptive Discrete Particle Swarm Optimisation
APSO - Adaptive Particle Swarm Optimisation
ASO - Aerodynamic Shape Optimisation
AOA - Angle of Attack
CCD - Central Composite Design
CFD - Computational Fluid Dynamics
CAD - Computer Aided Designing
CNC - Computer Numerical Control
CV - Cross Validation
DOE - Design Of Experiments
DAPSO - Dynamic Adaptive Particle Swarm Optimisation
EA - Evolutionary Algorithm
GA - Genetic Algorithm
GBEST - Global Best
HSS - Hammersley Sequence
MLE - Maximum Likelihood Estimation
MDO - Multidisciplinary Design Optimisation
NACA - National Advisory Committee for Aeronautics
OK - Ordinary Kriging
PARSEC - Parametric Section
PSO - Particle Swarm Optimisation
PBEST - Personal Best
RSM - Response Surface Methodology