Contents

Abstract i – v

1. Chapter 1 General Introduction 1-39
 1.1. Introduction 1
 1.2. Applications of bromine and bromo compounds 2
 1.3. Methods of bromination 6
 1.3.1. Direct use of elemental bromine 6
 1.3.2. Use of bromo compounds for bromination 10
 1.4. N,N-Dibromo-p-toluenesulfonamide: The titled brominating agent 24
 1.4.1. Review of literature 24
 1.4.2. Preparation of the reagent 26
 1.5. References 27

2. Chapter 2 Facile generation of vicinal bromoazides from olefins using TMSN₃ and TsNBr₂ without any catalyst 41-62
 2.1. Introduction 41
 2.2. Review of literature 42
 2.3. Present work 45
 2.3.1. Objective 45
 2.3.2. Results and Discussion 46
 2.3.3. Spectral Data Analysis 49
 2.3.4. Probable Mechanism 54
 2.4. Conclusion 55
 2.5. Experimental Section 56
 2.5.1. General procedure for synthesis of bromoazides 56
 2.5.2. Experimental data 56
 2.6. References 61
3. Chapter 3 An efficient protocol for stereoselective epoxidation of cinnamic esters using TsNBr₂

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Introduction</td>
<td>63</td>
</tr>
<tr>
<td>3.2. Review of literature</td>
<td>64</td>
</tr>
<tr>
<td>3.3. Present work</td>
<td>67</td>
</tr>
<tr>
<td>3.3.1. Objective</td>
<td>67</td>
</tr>
<tr>
<td>3.3.2. Results and Discussion</td>
<td>68</td>
</tr>
<tr>
<td>3.3.3. Analysis of Spectral Data</td>
<td>70</td>
</tr>
<tr>
<td>3.3.4. Probable mechanism</td>
<td>74</td>
</tr>
<tr>
<td>3.4. Conclusion</td>
<td>74</td>
</tr>
<tr>
<td>3.5. Experimental Section</td>
<td>75</td>
</tr>
<tr>
<td>3.4.1. General procedure for synthesis of epoxides</td>
<td>75</td>
</tr>
<tr>
<td>3.4.2. Experimental data</td>
<td>75</td>
</tr>
<tr>
<td>3.6. References</td>
<td>78</td>
</tr>
</tbody>
</table>

4. Chapter 4 Regio and stereoselective synthesis of aminobromine from olefins using TsNBr₂ without any catalyst

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Introduction</td>
<td>81</td>
</tr>
<tr>
<td>4.2. Review of literature</td>
<td>82</td>
</tr>
<tr>
<td>4.3. Present work</td>
<td>87</td>
</tr>
<tr>
<td>4.3.1. Objective</td>
<td>87</td>
</tr>
<tr>
<td>4.3.2. Results and Discussion</td>
<td>88</td>
</tr>
<tr>
<td>4.3.3. Spectral Data Analysis</td>
<td>90</td>
</tr>
<tr>
<td>4.3.4. Probable Mechanism</td>
<td>96</td>
</tr>
<tr>
<td>4.4. Conclusion</td>
<td>96</td>
</tr>
<tr>
<td>4.5. Experimental Section</td>
<td>97</td>
</tr>
<tr>
<td>4.5.1 General procedure for synthesis of aminobromine</td>
<td>97</td>
</tr>
<tr>
<td>4.5.2. Experimental data</td>
<td>97</td>
</tr>
<tr>
<td>4.6. References</td>
<td>100</td>
</tr>
</tbody>
</table>
5. Chapter 5 A simple and efficient bromoformyloxylation reaction using TsNBr₂

5.1. Introduction 103
5.2. Review of literature 104
5.3. Present work 106
 5.3.1. Objective 106
 5.3.2. Results and Discussion 107
 5.3.3. Spectral Data Analysis 109
 5.3.4. Probable Mechanism 114
5.4. Conclusion 114
5.5. Experimental Section 115
 5.5.1. General procedure for the bromoformyloxylation reaction 115
 5.5.2. Experimental data 115
5.6. References 119

6. Chapter 6 A synthetic approach for the enantiopure bromohydrins using Evans Chiral auxiliary as chiral precursor and TsNBr₂ as brominating agent

6.1. Introduction 121
6.2. Review of literature 123
6.3. Present work 126
 6.3.1. Objective 126
 6.3.2. Results and discussion 127
 6.3.3. Spectral Data Analysis 128
 6.3.4. Probable Mechanism 133
6.4. Conclusion 133
6.5. Experimental Section 134
 6.5.1. General procedure for the synthesis of acid chloride 134
 6.5.2. General procedure for the synthesis of the auxiliary 134
 6.5.3. General procedure for coupling of chiral auxilliary to the acid chloride 135
 6.5.4. General procedure for synthesis of the bromohydrin 135
 6.5.5. Experimental data 136
6.6. References 140
7. Chapter 7 A rapid bromination of phenols using TsNBr₂ as brominating agent 143-159

7.1. Introduction 143
7.2. Review of literature 144
7.3. Present work 147
 7.3.1. Objective 147
 7.3.2. Results and discussion 148
 7.3.3. Spectral Data Analysis 150
 7.3.4. Probable Mechanism 155
7.4. Conclusion 155
7.5. Experimental Section 156
 7.5.1. General procedure for bromination of phenol 156
 7.5.2. Experimental data 156
7.6. References 158

8. Chapter 8 A facile noncatalytic pathway for the nitrene transfer process: expeditious access to aziridines 161-193

8.1. Introduction 161
8.2. Review of literature 163
8.3. Present work 166
 8.3.1. Objective 166
 8.3.2. Result and discussion 167
 8.3.3. Probable Mechanism 172
 8.3.4. Spectral Data Analysis 174
8.4. Conclusion 182
8.5. Experimental Section 183
 8.5.1. General procedure for synthesis of aziridine 183
 8.5.2. Procedure for synthesis of N-(p-tosyl)-l H-azepine 183
 8.5.3. Experimental data 184
8.6. References 190