Contents

List of Figures 2

1 Introduction 3

1.1 Inventory system ... 4

1.1.1 Discrete Time Inventory Systems 7

1.2 Quasi-Birth-Death Processes 9

1.3 Matrix Analytic Methods 10

1.4 Review of related work .. 11

1.5 Summary of the thesis ... 13

2 Discrete time inventory models with positive service time
and lead time

2.1 Introduction ... 17

2.2 Mathematical Modelling and Analysis of model 1 19

2.2.1 Stability Condition 21

2.2.2 Steady-state analysis 23

2.2.3 System Performance Measures 26

2.3 Mathematical Formulation of model 2 and its analysis 27

2.3.1 Stability Condition 30

2.3.2 Steady-state analysis 32

2.3.3 System Performance Measures 34

2.4 Mathematical Formulation of model 3 and its analysis 35

2.4.1 Stability condition 36

2.4.2 Steady-state analysis 37

2.4.3 System Performance Measures 39

2.5 Cost Analysis ... 40
3 Discrete Time inventory models with common life time and positive service time

3.1 Introduction

3.2 Description of Model-1

3.2.1 Analysis of the model

3.2.2 Stability Condition

3.2.3 Steady-state analysis

3.2.4 System Performance Measures

3.3 Description of Model-2

3.3.1 Analysis of the model

3.3.2 Stability condition

3.3.3 Steady-state analysis

3.3.4 System Performance Measures

3.4 Description of Model-3
3.4.1 Analysis of the model ... 62
3.4.2 Stability Condition ... 64
3.4.3 Steady-state analysis .. 65
3.4.4 System Performance Measures 65
3.5 Cost Analysis ... 66
3.6 Numerical illustration and comparison of the performance of
the different models ... 67

4 (s, S) policy with inventory dependent customer arrival 75

4.1 Introduction ... 75
4.2 Mathematical Formulation of Model 1 76
4.3 Analysis of the model .. 77
4.4 Long run System behaviour 79
4.5 System Performance Measures 80
4.6 Model 2 .. 81
4.7 Analysis ... 81
4.8 Stability condition ... 84
4.9 Steady-state analysis .. 85
4.10 System Performance Measures 86
4.11 Cost Analysis .. 87

5 Discrete time \((s, S)\) production inventory system with positive service time 91

5.1 Introduction ... 91
5.2 The Mathematical model and its analysis 92
5.3 Steady-state analysis .. 96
5.4 System Performance Measures 99
5.5 Production cycle .. 100
5.6 Cost Analysis ... 102
5.7 Numerical illustration .. 102

6 Discrete time inventory system with arbitrarily distributed service time 105
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>6.2</td>
<td>Model 1</td>
<td>106</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Analysis of the model</td>
<td>107</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Stability condition</td>
<td>110</td>
</tr>
<tr>
<td>6.3</td>
<td>Model 2</td>
<td>111</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Analysis of the Markov chain</td>
<td>111</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Stability condition</td>
<td>115</td>
</tr>
<tr>
<td>6.4</td>
<td>Cost Analysis</td>
<td>116</td>
</tr>
<tr>
<td>6.5</td>
<td>Numerical illustration</td>
<td>117</td>
</tr>
<tr>
<td>7</td>
<td>Solution of (s, S) inventory problems: A Markov Decision Theory Approach</td>
<td>119</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>7.2</td>
<td>Model Description</td>
<td>120</td>
</tr>
<tr>
<td>7.3</td>
<td>Description of the problem</td>
<td>122</td>
</tr>
<tr>
<td>7.4</td>
<td>The long run average cost per unit time</td>
<td>123</td>
</tr>
</tbody>
</table>
7.5 The Optimal Policy and the Policy improvement Algorithm . 124

7.5.1 Performance measures 126

7.5.2 Cost analysis . 127

7.6 Numerical Illustration . 128

Bibliography 131