CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENT</th>
<th>(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>(ii-vii)</td>
</tr>
<tr>
<td>CURRICULUM VITAE</td>
<td>(viii-xiii)</td>
</tr>
<tr>
<td>DECLARATION UNDER CHAPTER XXVI OF THE ACADEMIC ORDINANCE OF ALIGARH MUSLIM UNIVERSITY, ALIGARH.</td>
<td>(xiv)</td>
</tr>
<tr>
<td>RESEARCH PUBLICATIONS</td>
<td>(xv-xxiv)</td>
</tr>
<tr>
<td>SUMMARY OF THE Ph.D. THESIS AND PUBLICATIONS DURING Ph.D.</td>
<td>(xxv-xxviii)</td>
</tr>
</tbody>
</table>

CHAPTER -1:

ADSORPTION AND ADSORPTION THERMODYNAMICS OF PESTICIDES ON SOILS, FLY ASH AND INORGANIC ION EXCHANGERS:

1.0	Effect of cationic, non-ionic and anionic surfactants on the adsorption of carbofuran on three different types of Indian soil.	1-14
1.1	Influence of soil properties on the adsorption of endosulfan on two soils at fixed volume fraction of methanol.	15-21
1.2	Effect of various factors on the sorption of endosulfan on two Indian soils.	22-33
1.3	Interaction of nematicides with soils.	34-47
1.4	Effect of different factors on the adsorption of endosulfan on soils.	48-54
1.5	Influence of cosolvent (acetone) on the adsorption and movement of cypermethrin on soils.	55-65
1.6	Effect of organic solvent (methanol) on the adsorption and movement of carbofuran on three soils of divergent texture.	66-72
1.7	Effect of cosolvent (acetone) on the adsorption and movement of cypermethrin in Indian soils.	73-83
1.8	Adsorption, movement and distribution of carbofuran in different soils.	84-90
1.9 The influence of organic cosolvent methanol on the adsorption of carbofuran on three different types of Indian soils. 91-101

1.10 Influence of acetone and methanol (cosolvents) on the adsorption of endosulfan on soils. 102-116

1.11 Influence of different factors on the adsorption of carbofuran (2, 3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methyl carbamate) on soils. 117-126

1.12 Adsorption of carbofuran on soils from water/methanol mixture. 127-134

1.13 Influence of different factors on the adsorption of phosphamidon on soils. 135-142

1.14 Adsorption and movement of oxamyl in soils. 143-148

1.15 Adsorption thermodynamics of carbofuran on sandy clay loam and silt loam soils. 149-153

1.16 Adsorption thermodynamics of carbofuran on acid and base saturated soils. 154-161

1.17 Adsorption thermodynamics of carbofuran on forest and black soils. 162-165

1.18 Sorption thermodynamics of cypermethrin at high concentrations on some Indian soils. 166-175

1.19 Adsorption thermodynamics of carbofuran on fly ash. 176-182

1.20 Studies of thermodynamics of phosphamidon on fly ash. 183-191

1.21 Adsorption thermodynamics of carbofuran on antimony (v) silicate cation exchanger. 192-196

1.22 Adsorption thermodynamics of carbofuran on Sn (iv) arsenosilicate in H⁺, Na⁺ and Ca²⁺ forms. 197-206

CHAPTER-2:
MOVEMENT OF PESTICIDES, AMINO ACIDS, PHENOLS AND TRACE ELEMENTS IN SOILS.

2.0 Evaluation of the effect of surfactants on the movement of pesticides in soils using a soil thin-layer chromatography technique. 207-223
2.1 Evaluation of effect of surfactants on the movement of synthetic pyrethroids in soils using a soil thin-layer chromatography technique. 224-234
2.2 Effect of water flux, organic matter, pH and cosolvents on the movement of pesticides in three soils. 235-243
2.3 Effect of organic matter and co-solvents (acetone and methanol) on the movement of synthetic pyrethroids in soils. 244-252
2.4 Movement of phosphamidon in soil columns. 253-262
2.5 Movement of carbofuran (Nematicide) in soil columns. 263-271
2.6 Movement of oxamyl in soil. 272-275
2.7 Effect of different salt leachates on the movement of some phosphorus containing pesticides in soil using thin-layer chromatography. 276-287
2.8 Effect of different saline, alkaline salts, fertilizers and surfactants on the movement of some phosphorus-containing pesticides in soils. 288-299
2.9 Effect of different saline, alkaline salts, fertilizers and surfactants on the movement of some carbamoyl group containing pesticides in soils. 300-322
2.10 Effect of different salt leachates on the movement of some carbamoyl groups containing pesticides in soils using thin-layer chromatography. 323-342
2.11 Effect of salinity, alkalinity, phosphate and organic matter on the movement of nematicides in soil. 343-347
2.12 Effect of oil-cakes on the movement of nematicides in soil. 348-354
2.13 Effect of different factors on the movement of nematicides in Aligarh soil using thin-layer chromatography. 355-359
2.14 Effect of cadmium, copper and zinc cations on the movement of different amino acids in silt loam soil. 360-368
2.15 Effect of cobalt, manganese and nickel cations on the movement of different amino acids in silt loam soil. 369-372
2.16 Effect of different factors on the movement of some amino acids in soils using thin-layer chromatography. 373-399
2.17 Movement of water soluble phenols in soil using thin-layer chromatography. 400-409
2.18 The effect of different factors on the mobility of cobalt, manganese and nickel in soils. 410-412
2.19 Effect of different factors on the movement of copper and zinc in soils. 413-415
2.20 Movement of trace elements in soils using thin-layer chromatography. 416-423
2.21 Mobility of trace elements in soils by thin-layer chromatography: Part II—Influence of salinity, alkalinity, phosphate and organic matter. 424-427
2.22 Mobility of trace elements in soils by thin-layer chromatography. Part I. 428-431

CHAPTER –3 :

PHYSICO-CHEMICAL AND THERMODYNAMIC STUDIES OF THE INTERACTION OF NICOTINE ON CLAYS:

3.0 Aluminium-nicotine exchange equilibria : Part III - on kaolinite. 432-439
3.1 Thermodynamics of the exchange of nicotine on aluminium-montmorillonite. 440-445
3.2 Aluminium-nicotine exchange equilibria on illite (Part II). 446-450
3.3 Studies on the adsorption of nicotine on kaolinites. 451-457

CHAPTER –4 :

THERMODYNAMICS OF EXCHANGE EQUILIBRIA OF INORGANIC IONS ON CLAYS, SOILS AND INORGANIC ION EXCHANGERS:

4.0 Sorption equilibria of cobalt (II) on two types of Indian soils -The natural ion exchangers. 458-463
4.1 Sorption equilibria of lead (II) on some Indian soils-The natural ion exchangers. 464-471
4.2 Sodium-zinc exchange equilibria on montmorillonite. 472-479
4.3 Calcium-zinc exchange equilibria on montmorillonite. 480-487
4.4 Thermodynamics of the Ca (II) – H(I) and Mg(II) – H(I) exchanges on zirconium (iv) phosphosilicate cation exchanger 488-499

4.5 Thermodynamics of the Ba^{2+} - H^{+} and Sr^{2+} - H^{+} exchanges on zirconium (iv) phosphosilicate cation exchanger. 500-508

4.6 Thermodynamics of Ba^{2+} - H^{+} and Sr^{2+} - H^{+} exchanges on antimony (v) silicate cation exchanger. 509-518

4.7 Thermodynamics of Ca^{2+} - H^{+} and Mg^{2+} - H^{+} exchanges on antimony (v) silicate cation exchanger. 519-529

4.8 Studies on the thermodynamics of cobalt exchange on Na-kaolinite and Na-illite. 530-532

4.9 Studies on the thermodynamics of ion-exchange in clays: Cobalt exchange on Al-montmorillonite. 533-542

4.10 Thermodynamics of ion-exchange equilibria involving Fe^{2+} ion on Na^{+} -montmorillonite. 543-547

4.11 Thermodynamics of ion-exchange equilibria involving Al-ions in Na- and Ca-illites. 548-552

CHAPTER –5:

EFFECT OF PESTICIDES AND FLY ASH ON THE MACRO AND MICRO NUTRIENTS STATUS OF THE SOILS AND GROWTH OF TOMATO PLANTS IN PRESENCE AND ABSENCE OF MELOIDOGYNE INCognITA.

5.0 Effect of oxamyl on macronutrients of the soil and growth of tomato plants in presence of Meloidogyne incognita. 553-561

5.1 Effect of carbofuran on the macronutrients of the soil and growth of tomato plants in presence of Meloidogyne incognita. 562-566

5.2 Influence of furadan 3G on micronutrients status of an alluvial soil. 567-569

5.3 Effect of nematicides on the available nitrogen in soil and growth of tomato plants. 570-572
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page Nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Effect of fly ash on growth of tomato plants, nematode population and available nutrients in soils.</td>
<td>573-577</td>
</tr>
<tr>
<td>5.5</td>
<td>Control of root-knot nematodes Meloidogyne incognita on tomato with soft coal fly ash.</td>
<td>578-580</td>
</tr>
</tbody>
</table>