<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Plot of $F(t)$ vs Time (Rate of Sorption of Cu^{2+})</td>
<td>63</td>
</tr>
<tr>
<td>2.2</td>
<td>IR spectra of lanthanum-diethanolamine</td>
<td>64</td>
</tr>
<tr>
<td>2.3</td>
<td>Thermograms of lanthanum diethanolamine</td>
<td>65</td>
</tr>
<tr>
<td>2.4(a-g)</td>
<td>(a) ESCA of unsorbed and (b) sorbed La-DEA</td>
<td>66-72</td>
</tr>
<tr>
<td>2.5</td>
<td>XRD of lanthanum diethanolamine</td>
<td>75</td>
</tr>
<tr>
<td>2.6a</td>
<td>Plots of x/m vs Ce for 75-50 microns at different temperatures</td>
<td>76</td>
</tr>
<tr>
<td>2.6b</td>
<td>Plots of x/m vs Ce for different mesh sizes at 303 K</td>
<td>77</td>
</tr>
<tr>
<td>2.7a</td>
<td>Langmuir adsorption isotherms of Cu^{2+} on lanthanum diethanolamine at different temperatures for 75-50 microns.</td>
<td>91</td>
</tr>
<tr>
<td>2.7b</td>
<td>Langmuir adsorption isotherms of Cu^{2+} on different mesh sizes of lanthanum diethanolamine at 303 K.</td>
<td>92</td>
</tr>
<tr>
<td>2.8</td>
<td>Plot of Ce vs temp ($^\circ$C) at various critical values of x/m.</td>
<td>95</td>
</tr>
<tr>
<td>2.9(a-d)</td>
<td>Tentative structural formula of unsorbed and Cu^{2+} sorbed lanthanum diethanolamine.</td>
<td>107</td>
</tr>
<tr>
<td>3.1</td>
<td>Ion exchange isotherm of Mg^{2+} ion on Amberlite IRC-718.</td>
<td>124</td>
</tr>
<tr>
<td>3.2</td>
<td>Ion exchange isotherm of Ba^{2+} ion on Amberlite IRC-718.</td>
<td>124</td>
</tr>
<tr>
<td>3.3</td>
<td>Ion exchange isotherm of Ca^{2+} ion on Amberlite IRC-718.</td>
<td>129</td>
</tr>
</tbody>
</table>
3.4 Ion exchange isotherm of Sr\(^{2+}\) ion on Amberlite IRC-718.

3.5 Ion exchange isotherm of Cu\(^{2+}\) ion on Amberlite IRC-718.

3.6 Ion exchange isotherm of Pb\(^{2+}\) ion on Amberlite IRC-718.

3.7 Ion exchange isotherm of Mg\(^{2+}\) ion on Amberlite IRC-718.

3.8 Ion exchange isotherm of Hg\(^{2+}\) ion on Amberlite IRC-718.

3.9 Ion exchange isotherm of Mn\(^{2+}\) ion on Amberlite IRC-718.

3.10 Ion exchange isotherm of Fe\(^{3+}\) ion on Amberlite IRC-718.

3.11 Ion exchange isotherm of Ag\(^{+}\) ion on Amberlite IRC-718.

3.12 Normalized plots of selectivity coefficients vs equivalent fractions of Mg\(^{2+}\) ion in exchanger phase.

3.13 Normalized plots of selectivity coefficients vs equivalent fractions of Ba\(^{2+}\) ion in exchanger phase.

3.14 Normalized plots of selectivity coefficients vs equivalent fractions of Sr\(^{2+}\) ion in exchanger phase.

3.15 Normalized plots of selectivity coefficients vs equivalent fractions of Ca\(^{2+}\) ion in exchanger phase.

3.16 Normalized plots of selectivity coefficients vs equivalent fractions of Fe\(^{3+}\) ion in exchanger phase.
3.17 Normalized plots of selectivity coefficients vs equivalent fractions of Hg$^{2+}$ ion in exchanger phase.

3.18 Normalized plots of selectivity coefficients vs equivalent fractions of Cu$^{2+}$ ion in exchanger phase.

3.19 Normalized plots of selectivity coefficients vs equivalent fractions of Pb$^{2+}$ ion in exchanger phase.

3.20 Normalized plots of selectivity coefficients vs equivalent fractions of Mn$^{2+}$ ion in exchanger phase.

3.21 Normalized plots of selectivity coefficients vs equivalent fractions of Ni$^{2+}$ ion in exchanger phase.

3.22 Normalized plots of selectivity coefficients vs equivalent fractions of Ag$^{+}$ ion in exchanger phase.

3.23 Plots of ln Ka vs 1/T for alkaline earth metal ions.

3.24 Plots of ln Ka vs 1/T for transition metal ions.

4.1 Ion exchange isotherm of Mg$^{2+}$ ion on Duolite ES-467.

4.2 Ion exchange isotherm of Ca$^{2+}$ ion on Duolite ES-467.

4.3 Ion exchange isotherm of Ba$^{2+}$ ion on Duolite ES-467.

4.4 Ion exchange isotherm of Sr$^{2+}$ ion on Duolite ES-467.

4.5 Ion exchange isotherm of Cu$^{2+}$ ion on Duolite ES-467.
4.6 Ion exchange isotherm of Pb$^{2+}$ ion on Duolite ES-467.

4.7 Normalized plots of selectivity coefficient vs equivalent fraction of Pb$^{2+}$ ion in exchanger phase.

4.8 Normalized plots of selectivity coefficient vs equivalent fraction of Cu$^{2+}$ ion in exchanger phase.

4.9 Normalized plots of selectivity coefficient vs equivalent fraction of Mg$^{2+}$ ion in exchanger phase.

4.10 Normalized plots of selectivity coefficient vs equivalent fraction of Sr$^{2+}$ ion in exchanger phase.

4.11 Normalized plots of selectivity coefficient vs equivalent fraction of Ba$^{2+}$ ion in exchanger phase.

4.12 Normalized plots of selectivity coefficient vs equivalent fraction of Ca$^{2+}$ ion in exchanger phase.

4.13 Plot of ln Ka vs $1/T$ for alkaline earths, Cu$^{2+}$ and Pb$^{2+}$ ions.

5.1 Rate of exchange of Cu$^{2+}$ on Amberlite IRC-718.

5.2 Effect of an interruption on the rate of Cu$^{2+}$ - Na$^{+}$ exchange on Amberlite IRC-718.

5.3 Rate of exchange of Cu$^{2+}$ at different temperatures on Amberlite IRC-718.

5.4 Rate of exchange of Pb$^{2+}$ at different temperatures on Amberlite IRC-718.

5.5 Rate of exchange of Mg$^{2+}$ at different temperatures on Amberlite IRC-718.

5.6 Rate of exchange of Ba$^{2+}$ at different temperatures on Amberlite IRC-718.
xi

5.7 Rate of exchange of Ca2+ at different temperatures on Amberlite IRC-718.

5.8 Rate of exchange of Sr2+ at different temperatures on Amberlite IRC-718.

5.9 Influence of particle size on the rate of Cu2+ - Na+ exchange at 30°C on Amberlite IRC-718.

5.10 Effect of temperature on the rate of Ba2+ - Na+ exchange on Amberlite IRC-718 at particle radius = 0.0175 cm.

5.11 Effect of temperature on the rate of Mg2+ - Na+ exchange on Amberlite IRC-718 at particle radius = 0.0175 cm.

5.12 Effect of temperature on the rate of Sr2+ - Na+ exchange on Amberlite IRC-718 at particle radius = 0.0175 cm.

5.13 Effect of temperature on the rate of Pb2+ - Na+ exchange on Amberlite IRC-718 at particle radius = 0.0175 cm.

5.14 Effect of temperature on the rate of Ca2+ - Na+ exchange on Amberlite IRC-718 at particle radius = 0.0175 cm.

5.15 Effect of temperature on the rate of Cu2+ - Na+ exchange on Amberlite IRC-718 at particle radius = 0.0175 cm.

5.16 Effect of particle size on the rate of exchange for Cu2+ - Na+ on Amberlite IRC-718.

5.17 Plot of B vs 1/r2 for Cu2+ at 30°C.

5.18 Plot of time vs X (eq g) from moving boundary method for Na+ - Sr2+ exchange at different temperature at particle radius = 0.0175 cm.

5.19 Plot of time vs X (eq 9) from moving boundary method for Na+ - Ca2+ exchange at different temperature at particle radius = 0.0175 cm.
5.20 Plot of time vs X (eq 9) from moving boundary method for Na\(^+\) - Mg\(^{2+}\) exchange at different temperature at particle radius = 0.0175 cm.

5.21 Plot of time vs X (eq 9) from moving boundary method for Na\(^+\) - Ba\(^{2+}\) exchange at different temperature at particle radius = 0.0175 cm.

5.22 Plot of time vs X (eq 9) from moving boundary method for Na\(^+\) - Pb\(^{2+}\) exchange at different temperature at particle radius = 0.0175 cm.

5.23 Plot of time vs X (eq 9) from moving boundary method for Na\(^+\) - Cu\(^{2+}\) exchange at different temperature at particle radius = 0.0175 cm.

5.24 Plot of T vs t for Ca\(^{2+}\) - Na\(^+\) exchange at different temperatures on Amberlite IRC-718 under the condition of particle diffusion.

5.25 Plot of T vs t for Cu\(^{2+}\) - Na\(^+\) exchange at different temperatures on Amberlite IRC-718 under the condition of particle diffusion.

5.26 Plot of T vs t for Mg\(^{2+}\) - Na\(^+\) exchange at different temperatures on Amberlite IRC-718 under the condition of particle diffusion.

5.27 Plot of T vs t for Pb\(^{2+}\) - Na\(^+\) exchange at different temperatures on Amberlite IRC-718 under the condition of particle diffusion.

5.28 Plot of T vs t for Sr\(^{2+}\) - Na\(^+\) exchange at different temperatures on Amberlite IRC-718 under the condition of particle diffusion.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.29</td>
<td>Plot of T vs t for $\text{Ba}^{2+} - \text{Na}^+$ exchange at different temperatures on Amberlite IRC-718 under the condition of particle diffusion.</td>
</tr>
<tr>
<td>5.30</td>
<td>Plot of $\log D_i$ vs $1/T \ K$ on Amberlite IRC-718 by Bt method for Pb^{2+} and Cu^{2+} ions.</td>
</tr>
<tr>
<td>5.31</td>
<td>Plot of $\log D_i$ vs $1/T \ K$ on Amberlite IRC-718 by Bt method for Sr^{2+} and Ca^{2+} ions.</td>
</tr>
<tr>
<td>5.32</td>
<td>Plot of $\log D_i$ vs $1/T \ K$ on Amberlite IRC-718 by Bt method for Ba^{2+} and Mg^{2+} ions.</td>
</tr>
<tr>
<td>5.33</td>
<td>Plot of $\log D_i$ vs $1/T \ K$ on Amberlite IRC-718 by Nernst Planck equation for Sr^{2+} and Ba^{2+} ions.</td>
</tr>
<tr>
<td>5.34</td>
<td>Plot of $\log D_i$ vs $1/T \ K$ on Amberlite IRC-718 by Nernst Planck equation for Ca^{2+} and Pb^{2+} ions.</td>
</tr>
<tr>
<td>5.35</td>
<td>Plot of $\log D_i$ vs $1/T \ K$ on Amberlite IRC-718 by Nernst Planck equation for Mg^{2+} and Cu^{2+} ions.</td>
</tr>
<tr>
<td>5.36</td>
<td>Plot of $\log D_i$ vs $1/T \ K$ on Amberlite IRC-718 by Ash model for Cu^{2+} and Pb^{2+} ions.</td>
</tr>
<tr>
<td>5.37</td>
<td>Plot of $\log D_i$ vs $1/T \ K$ on Amberlite IRC-718 by Ash model for Ba^{2+} and Mg^{2+} ions.</td>
</tr>
<tr>
<td>5.38</td>
<td>Plot of $\log D_i$ vs $1/T \ K$ on Amberlite IRC-718 by Ash model for Ca^{2+} and Sr^{2+} ions.</td>
</tr>
</tbody>
</table>