LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLES</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Thermodynamic studies on various ion exchange material.</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Some of the important ligand ion exchange material.</td>
<td>17</td>
</tr>
<tr>
<td>1.3</td>
<td>Certain oxides, inorganic ion exchangers and ion exchange resins used as adsorbents.</td>
<td>34</td>
</tr>
<tr>
<td>2.1</td>
<td>Table 1.2 of Chapter I. (Some of the important ligand ion exchange material).</td>
<td>54</td>
</tr>
<tr>
<td>2.2</td>
<td>Conditions of preparation of lanthanum diethanolamine.</td>
<td>57</td>
</tr>
<tr>
<td>2.3</td>
<td>Ion exchange/sorption capacities of some anions and cations on La-DEA.</td>
<td>60</td>
</tr>
<tr>
<td>2.4</td>
<td>Rate of sorption of Cu$^{2+}$ on La-DEA.</td>
<td>62</td>
</tr>
<tr>
<td>2.5</td>
<td>Values of binding energies for different elements in sorbed and unsorbed exchangers.</td>
<td>73</td>
</tr>
<tr>
<td>2.6</td>
<td>Fitting of Freundlich equation at different temperatures for a constant particle size.</td>
<td>78</td>
</tr>
<tr>
<td>2.7</td>
<td>Fitting of Freundlich equation for different particle size at 303 K.</td>
<td>81</td>
</tr>
<tr>
<td>2.8</td>
<td>Fitting of Langmuir equation at different temperatures at a constant particle size.</td>
<td>84</td>
</tr>
<tr>
<td>2.9</td>
<td>Fitting of Langmuir equation for different particle sizes at 303 K.</td>
<td>88</td>
</tr>
<tr>
<td>2.10</td>
<td>Isothermic enthalpies and the corresponding equilibrium concentration at different temperatures.</td>
<td>98</td>
</tr>
</tbody>
</table>
3.1 Equivalent fraction of Mg$^{2+}$, selectivity coefficient and thermodynamic equilibrium constant for Mg$^{2+}$ - Na$^+$ exchange on Amberlite IRC-718.

3.2 Equivalent fraction of Ba$^{2+}$, selectivity coefficient and thermodynamic equilibrium constant for Ba$^{2+}$ - Na$^+$ exchange on Amberlite IRC-718.

3.3 Equivalent fraction of Ca$^{2+}$, selectivity coefficient and thermodynamic equilibrium constant for Ca$^{2+}$ - Na$^+$ exchange on Amberlite IRC-718.

3.4 Equivalent fraction of Sr$^{2+}$, selectivity coefficient and thermodynamic equilibrium constant for Sr$^{2+}$ - Na$^+$ exchange on Amberlite IRC-718.

3.5 Equivalent fraction of Cu$^{2+}$, selectivity coefficient and thermodynamic equilibrium constant for Cu$^{2+}$ - Na$^+$ exchange on Amberlite IRC-718.

3.6 Equivalent fraction of Pb$^{2+}$, selectivity coefficient and thermodynamic equilibrium constant for Pb$^{2+}$ - Na$^+$ exchange on Amberlite IRC-718.

3.7 Equivalent fraction of Hg$^{2+}$, selectivity coefficient and thermodynamic equilibrium constant for Hg$^{2+}$ - Na$^+$ exchange on Amberlite IRC-718.

3.8 Equivalent fraction of Mn$^{2+}$, selectivity coefficient and thermodynamic equilibrium constant for Mn$^{2+}$ - Na$^+$ exchange on Amberlite IRC-718.

3.9 Equivalent fraction of Ni$^{2+}$, selectivity coefficient and thermodynamic equilibrium constant for Ni$^{2+}$ - Na$^+$ exchange on Amberlite IRC-718.
3.10 Equivalent fraction of Fe$^{3+}$, selectivity coefficient and thermodynamic equilibrium constant for Fe$^{3+}$ - Na$^+$ exchange on Amberlite IRC-718.

3.11 Equivalent fraction of Ag$^+$, selectivity coefficient and thermodynamic equilibrium constant for Ag$^+$ - Na$^+$ exchange on Amberlite IRC-718.

3.12 Thermodynamic Parameters on Amberlite IRC-718 at an ionic strength of 0.1 at various temperatures.

4.1 Ion exchange capacity of some cations on Duolite ES-467.

4.2 Equivalent fraction of Mg$^{2+}$, selectivity coefficient and thermodynamic equilibrium constants for Mg$^{2+}$ - Na$^+$ exchange on Duolite ES-467.

4.3 Equivalent fraction of Ca$^{2+}$, selectivity coefficient and thermodynamic equilibrium constants for Ca$^{2+}$ - Na$^+$ exchange on Duolite ES-467.

4.4 Equivalent fraction of Ba$^{2+}$, selectivity coefficient and thermodynamic equilibrium constants for Ba$^{2+}$ - Na$^+$ exchange on Duolite ES-467.

4.5 Equivalent fraction of Sr$^{2+}$, selectivity coefficient and thermodynamic equilibrium constants for Sr$^{2+}$ - Na$^+$ exchange on Duolite ES-467.

4.6 Equivalent fraction of Cu$^{2+}$, selectivity coefficient and thermodynamic equilibrium constants for Cu$^{2+}$ - Na$^+$ exchange on Duolite ES-467.

4.7 Equivalent fraction of Pb$^{2+}$, selectivity coefficient and thermodynamic equilibrium constants for Pb$^{2+}$ - Na$^+$ exchange on Duolite ES-467.
4.8 Thermodynamic parameters for $M^{2+} - Na^+$ exchange on Duolite ES-467 at constant ionic strength at various temperatures.

5.1 Ion exchange capacity of Amberlite IRC-718 for various cations at room temperature.

5.2 Rate of exchange of Cu^{2+} on Amberlite IRC-718 at constant temperature and particle size.

5.3 Kd values for different metal ions in different solvents.

5.4 Interruption test for $Cu^{2+} - Na^+$ exchange on Amberlite IRC-718 at 30 ± 1°C.

5.5 $U(t)$, T(obs), T(calc) values as a function of time for Cu^{2+} on Amberlite IRC-718 at different temperatures.

5.6 $U(t)$, T(obs), T(calc) values as a function of time for Pb^{2+} on Amberlite IRC-718 at different temperatures.

5.7 $U(t)$, T(obs), T(calc) values as a function of time for Mg^{2+} on Amberlite IRC-718 at different temperatures.

5.8 $U(t)$, T(obs), T(calc) values as a function of time for Ba^{2+} on Amberlite IRC-718 at different temperatures.

5.9 $U(t)$, T(obs), T(calc) values as a function of time for Ca^{2+} on Amberlite IRC-718 at different temperatures.

5.10 $U(t)$, T(obs), T(calc) values as a function of time for Sr^{2+} on Amberlite IRC-718 at different temperatures.
5.11 U(t) Bt, values as a function of particle size for Cu\(^{2+}\) - Na\(^+\) exchange on Amberlite IRC-718 at 30 ± 1°C.

5.12 B values as a function of particle size at 30°C.

5.13 Values of Di \(\text{m}^2\,\text{sec}^{-1}\) for various ions at different temperatures on Amberlite IRC-718 by Bt method, Nernst Planck equation and Ash model.

5.14 Comparative values of Do, for alkaline earth Cu\(^{2+}\) and Pb\(^{2+}\) ions on Amberlite IRC-718 by Bt method, Nernst Planck method and Ash model.

5.15 Comparative values of Ea and \(\Delta S^*_e\) for Alkaline earths, Cu\(^{2+}\) and Pb\(^{2+}\) on Amberlite IRC-718 by Bt method, and Nernst Planck method.