Table 23: Adsorption of carbofuran on natural loam soil at 0.50 $f_S$ of volume fraction of methanol.

Table 24: Adsorption of carbofuran on natural sandy loam soil at 0.75 $f_S$ of volume fraction of methanol.

Table 25: Adsorption of carbofuran on natural loam soil at 0.75 $f_S$ of volume fraction of methanol.

Table 26: Adsorption of carbofuran on natural sandy loam soil at 1.00 $f_S$ of volume fraction of methanol.

Table 27: Adsorption of carbofuran on natural loam soil at 1.00 $f_S$ of volume fraction of methanol.

Table 28: Freundlich constants and partition coefficient data for carbofuran adsorption on soils at different $f_S$ values.

Table 29: Effect of different volume fractions of cosolvent (methanol) on the movement of carbofuran in soils.

Table 30: Selected properties of water/methanol mixtures.

Table 31: Data summary of the adsorption isotherm used to evaluate the cosolvent theory.

Table 32: Adsorption of endosulphan on natural sandy loam soil at 0.25 $f_S$ of volume fraction of methanol.

Table 33: Adsorption of endosulphan on natural loam soil at 0.25 $f_S$ of volume fraction of methanol.

Table 34: Adsorption of endosulphan on natural sandy loam soil at 0.50 $f_S$ of volume fraction of methanol.
Table 35: Adsorption of endosulphan on natural loam soil at 0.50 $f_s$ of volume fraction of methanol.

Table 36: Adsorption of endosulphan on natural sandy loam soil at 0.75 $f_s$ of volume fraction of methanol.

Table 37: Adsorption of endosulphan on natural loam soil at 0.75 $f_s$ of volume fraction of methanol.

Table 38: Adsorption of endosulphan on natural sandy loam soil at 1.00 $f_s$ of volume fraction of methanol.

Table 39: Adsorption of endosulphan on natural loam soil at 1.00 $f_s$ of volume fraction of methanol.

Table 40: Adsorption of endosulphan on natural sandy loam soil at 0.25 $f_s$ of volume fraction of acetone.

Table 41: Adsorption of endosulphan on natural loam soil at 0.25 $f_s$ of volume fraction of acetone.

Table 42: Adsorption of endosulphan on natural sandy loam soil at 0.50 $f_s$ of volume fraction of acetone.

Table 43: Adsorption of endosulphan on natural loam soil at 0.50 $f_s$ of volume fraction of acetone.

Table 44: Adsorption of endosulphan on natural sandy loam soil at 0.75 $f_s$ of volume fraction of acetone.

Table 45: Adsorption of endosulphan on natural loam soil at 0.75 $f_s$ of volume fraction of acetone.

Table 46: Adsorption of endosulphan on natural sandy loam soil at 1.00 $f_s$ of volume fraction of acetone.
Table 47: Adsorption of endosulphan on natural loam soil at 1.00 $f_s$ of volume fraction of acetone.

Table 48: Freundlich constants, partition coefficients data of endosulphan adsorption.

Table 49: Effect of different volume fractions of cosolvents (acetone and methanol) on the movement of endosulphan.

Table 50: Selected properties of acetone /water mixtures.

Table 51: Data Summary of the adsorption isotherm used to evaluate the cosolvent theory.

Table 52: Adsorption of endosulphan on natural sandy loam soil at 0.25 $f_s$ of volume fraction of methanol at 10$^0$C.

Table 53: Adsorption of endosulphan on natural loam soil at 0.25 $f_s$ of volume fraction of methanol at 10$^0$C.

Table 54: Adsorption of endosulphan on natural sandy loam soil at 0.25 $f_s$ of volume fraction of methanol at 20$^0$C.

Table 55: Adsorption of endosulphan on natural loam soil at 0.25 $f_s$ of volume fraction of methanol at 20$^0$C.

Table 56: Adsorption of endosulphan on organic matter removed sandy loam soil at 0.25 $f_s$ of volume fraction of methanol.

Table 57: Adsorption of endosulphan on organic matter
removed loam soil at 0.25 \( f_s \) of volume fraction of methanol

Table 58: Adsorption of endosulphan on H-saturated sandy loam soil at 0.25 \( f_s \) of volume fraction of methanol.

Table 59: Adsorption of endosulphan on H-saturated loam soil at 0.25 \( f_s \) of volume fraction of methanol.

Table 60: Adsorption of endosulphan on Na-saturated sandy loam soil at 0.25 \( f_s \) of volume fraction of methanol.

Table 61: Adsorption of endosulphan on Na-saturated loam soil at 0.25 \( f_s \) of volume fraction of methanol.

Table 62: Adsorption of endosulphan on natural sandy loam soil at 0.25 \( f_s \) of volume fraction of methanol at 40\(^0\)C.

Table 63: Adsorption of endosulphan on natural sandy loam soil at 0.25 \( f_s \) of volume fraction of methanol at 40\(^0\)C.

Table 64: Effect of tween 20 (non-ionic surfactant) on adsorption of endosulphan on sandy loam soil at 0.25 \( f_s \) of volume fraction of methanol.

Table 65: Effect of tween 20 (non-ionic surfactant) on adsorption of endosulphan on loam soil at 0.25 \( f_s \) of volume fraction of methanol.

Table 66: Effect of sodium dodecyl sulphate (anionic surfactant) on adsorption of endosulphan on sandy loam soil at 0.25 \( f_s \) of volume fraction of methanol.
Table 67: Effect of sodium dodecyl sulphate (anionic surfactant) on adsorption of endosulphan on loam soil at 0.25 $f_s$ of volume fraction of methanol.

Table 68: Values of Freundlich and distribution coefficients for the adsorption of endosulphan on soils.

Table 69: Values of thermodynamic parameters associated with adsorption of endosulphan on soils.