CHAPTER 3

COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM

3.1 INTRODUCTION

Static synchronous compensator is a shunt connected reactive power compensation device that is capable of generating or absorbing reactive power. The output voltage of the STATCOM is adjusted to control power factor, regulate voltage, stabilize power flow and improve the dynamic performance of the power system. The voltage source inverter is an important part in the STATCOM that generate a fundamental output voltage waveform with demanded magnitude and phase angle in synchronism with the sinusoidal system which forces the reactive power exchange required for compensation.

The traditional two-level VSI produces a square wave output as it switches the direct voltage source on and off. However for high voltage applications, a near sinusoidal ac voltage with minimal harmonic distortion is required. Several high power inverter topologies such as multipulse and multilevel inverters have been proposed for the implementation of FACTS devices.

The key problem with the multipulse inverter is the requirement of magnetic interfaces constituted by complex zig-zag phase shifting transformers which tremendously increases the cost of the complete system [57, 61]. However the multipulse inverter doesn’t have complex control and provides lesser THD. MLI is cheaper than MPI, but requires complex control circuit [57, 96] and produces more THD than MPI. Hence in order to obtain an optimal inverter topology, a trade off between the cost and complexity in control is necessary. Therefore a hybrid topology, involving both multipulse and multilevel inverter configurations extracting the advantages of them will be attractive.

46
3.2 EXISTING 48-PULSE INVERTER TOPOLOGY

In multi-pulse operation, the harmonic content can be significantly reduced by using several pulses in each half cycle of the output voltage. The 48-pulse inverter has low harmonic rate on the ac side and can be used for high power FACTS controllers without ac filters. The 48-pulse inverter is realized by combining eight 6-pulse voltage source inverters with adequate phase shifts between them. The configuration of 48-pulse inverter is depicted in the Fig. 3.1 where each of the VSI output is connected to the phase shifting transformer. Four of them are connected to a Y-Y transformer and the remaining four to a Δ-Y transformer. The output of the phase shifting transformers is connected in series to cancel out the lower order harmonics.

Fig. 3.1 48-pulse voltage source inverter
To create a 48-pulse waveform with a harmonic content in the order of \(m = 48r \pm 1 \), (where \(r = 0, 1, 2, \ldots \)) the eight 6-pulse inverter voltages need to be phase shifted. This is implemented by introducing appropriate phase shift in the phase shifting transformer and the gate pulse pattern of individual VSI. Table 3.1 shows the phase displacements applied to the gate pulse pattern of each VSI and the corresponding phase shifting transformer. Thus a premium quality sinusoidal voltage is obtained with the 48-pulse inverter configuration as depicted in Fig.3.2.

Table 3.1 Phase displacement for a 48-pulse VSI

<table>
<thead>
<tr>
<th>Coupling transformer</th>
<th>Gate pulse pattern</th>
<th>Phase shifting transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-Y</td>
<td>+11.25°</td>
<td>-11.25°</td>
</tr>
<tr>
<td>Δ-Y</td>
<td>-18.75°</td>
<td>-11.25°</td>
</tr>
<tr>
<td>Y-Y</td>
<td>-3.75°</td>
<td>+3.75°</td>
</tr>
<tr>
<td>Δ-Y</td>
<td>-33.75°</td>
<td>+3.75°</td>
</tr>
<tr>
<td>Y-Y</td>
<td>+3.75°</td>
<td>-3.75°</td>
</tr>
<tr>
<td>Δ-Y</td>
<td>-26.25°</td>
<td>-3.75°</td>
</tr>
<tr>
<td>Y-Y</td>
<td>-11.25°</td>
<td>+11.25°</td>
</tr>
<tr>
<td>Δ-Y</td>
<td>-41.25°</td>
<td>+11.25°</td>
</tr>
</tbody>
</table>

Fig. 3.2 48-Pulse inverter output voltage
It is proposed to build up a forty eight pulse inverter topology through the twenty four pulse configuration in which each individual two level inverters are converted to 3-level diode clamped structures. This new topology enjoys the benefits of both the MPI and MLI configurations and is referred as combined multipulse-multilevel inverter topology. The harmonic performance of this inverter topology is evaluated through MATLAB based simulation. It establishes that this structure almost offers the same response as that of a forty eight pulse inverter in respect of THD. Further the static synchronous compensator operation is realized using the proposed high performance, reliable, flexible and cost effective inverter topology. A closed loop controller based on decoupled control strategy is developed for effectively operating the STATCOM over a wide range of power system operating conditions.

3.3 PROPOSED INVERTER TOPOLOGY

The proposed configuration shown in Fig.3.3 is obtained by combining four three-level diode clamped multilevel inverters with an adequate phase shifts between them. The voltages generated by each of the three level inverters are applied to the secondary windings of four different PSTs. Two of them are Y-Y transformers with a turns ratio of 1:1 and the remaining two are Δ-Y transformers with a turns ratio of 1:√3. The primary windings of the PSTs are connected in series and the proper pulse pattern as tabulated in Table 3.2 is maintained so that the fundamental components of the individual 3-level inverters are added in phase on the primary side.

In this configuration the number of PST requirement is reduced to half of that needed in 48-pulse operation. Though the configuration is similar to a 24-pulse inverter, it provides very less THD as that of the 48-pulse inverter. This is possible by selectively eliminating the 23rd and 25th harmonic components through the appropriate selection of the conduction angle (σ) of the individual three-level inverter units.
Table 3.2 Phase displacement for the combined multipulse-multilevel inverter

<table>
<thead>
<tr>
<th>Coupling transformer</th>
<th>Gate pulse pattern</th>
<th>Phase shifting transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-Y</td>
<td>+7.5°</td>
<td>-7.5°</td>
</tr>
<tr>
<td>Δ-Y</td>
<td>-22.5°</td>
<td>-7.5°</td>
</tr>
<tr>
<td>Y-Y</td>
<td>-7.5°</td>
<td>+7.5°</td>
</tr>
<tr>
<td>Δ-Y</td>
<td>-37.5°</td>
<td>+7.5°</td>
</tr>
</tbody>
</table>

Each unit in the proposed structure is a diode clamped three-level inverter configuration as shown in Fig.3.4. The dc-bus voltage is split into three levels by two series connected bulk capacitors, C₁ and C₂. The output voltage \(v_{an} \) has three states namely \(V_{dc}/2 \), 0 and \(-V_{dc}/2 \) when the switch pairs \(S_1 \) & \(S_2 \), \(S_2 \) & \(S_1' \) and \(S_1' \) & \(S_2' \) are switched ON respectively. In general the conduction angle \(\sigma \) of the three level inverter is chosen as

\[
\sigma = 180\degree \left(1 - \frac{1}{m} \right)
\]

(3.1)

where \(m \) is the harmonic component which is to be eliminated.
3.3.1 Harmonic Analysis

The phase-to-phase voltage and the phase-to-neutral voltage of a single three-level diode clamped multilevel inverter with conduction angle σ are described in Fig. 3.5.
Carrying out the Fourier analysis of the inverter output voltage, the instantaneous phase-to-neutral voltage is expressed as:

\[v_{an}(t) = \sum_{m=1}^{\infty} V_{an,m} \sin m\omega t \]

(3.2)

where \[V_{an,m} = \frac{2V_{DC}}{m\pi} \cos m \left(\frac{\pi - \sigma}{2} \right) \]

(3.3)

Similarly the instantaneous phase-to-phase voltage is expressed as

\[v_{ab}(t) = \sum_{m=1}^{\infty} V_{ab,m} \sin \left(m\omega t + m\frac{\pi}{6} \right) \]

(3.4)

where \[V_{ab,m} = \frac{4V_{DC}}{m\pi} \sin \frac{m\sigma}{2} \cos \frac{m\pi}{6} \]

(3.5)

The voltages \(v_{bc}(t) \) and \(v_{ca}(t) \) exhibit a similar pattern except that they are phase shifted by 120° and 240° respectively. Similarly the phase voltages \(v_{bn}(t) \) and \(v_{cn}(t) \) are also phase shifted by 120° and 240° respectively. It contains only odd harmonics in the order of \(6r\pm1 \), where \(r \) is a numeral can assume values 1, 2, 3,……

In general star and delta connected windings have a relative phase shift of 30° and the three-level inverters connected to each of these Y and Δ transformers will give an overall 12-pulse operation and offers a better harmonic performance. The output voltage will have a twelve pulse waveform, with harmonics of the order of \(12r\pm1 \). Thus the twelve pulse inverter will have 11th, 13th, 23rd, 25th,…… harmonics with amplitudes of 1/11th, 1/13th, 1/23rd, 1/25th,…… respectively of the fundamental ac voltage.

The relationship between the phase-to-phase voltage and the phase-to-neutral voltage is expressed as:

\[v_{ab,m} = (-1)^r \sqrt{3} v_{an,m} \]

(3.6)

For obtaining 12-pulse inverter the VSI output is connected to a Y-Y transformer with a 1:1 turn ratio, and the line to neutral voltage using equation (3.6) can be expressed as:
\[v_{an}(t)_1 = \frac{1}{\sqrt{3}} \sum_{m=1}^{\infty} \frac{V_{amn}}{(-1)^{r}} \sin \omega t \] \tag{3.7}
\[\forall m = 6r \pm 1, r = 0, 1, 2, \ldots \]

If the VSI \(_2\) produces phase-to-phase voltages lagging by 30° with respect to VSI\(_1\) and with the same magnitude, it is given by
\[v_{ab}(t)_2 = \sum_{m=1}^{\infty} V_{ab_n} \sin \omega t \] \tag{3.8}

If this inverter output is connected to a Δ-Y transformer with a \(1:1/\sqrt{3}\) turn ratio, the line-to-neutral voltage in the Y-connected secondary will be
\[v_{aniY}(t)_2 = \sum_{m=1}^{\infty} V_{ani_n} \sin \omega t \] \tag{3.9}

Therefore line-to-line voltage in the secondary side is
\[v_{abY}(t)_2 = \sqrt{3} \sum_{m=1}^{\infty} V_{ani_n} \sin \left(\omega t + \frac{m\pi}{6} \right) \] \tag{3.10}

The 12-pulse inverter output is obtained by adding the equations (3.4) and (3.10).

\[v_{ab}(t)_{12} = v_{ab}(t) + v_{abY}(t)_2 \] \tag{3.11}
\[v_{ab}(t)_{12} = \sum_{m=1}^{\infty} V_{ab_{2n}} \sin \left(\omega t + \frac{m\pi}{6} \right) \] \tag{3.12}
\[\forall m = 12r \pm 1, r = 0, 1, 2, \ldots \]

since \[V_{ab_{2n}} = V_{ab_n} + \sqrt{3} V_{ani_n} = 2V_{ab_n} \]
\[\therefore v_{ab}(t)_{12} = 2 \sum_{m=1}^{\infty} V_{ab_n} \sin \left(\omega t + \frac{m\pi}{6} \right) \] \tag{3.13}

Similarly two twelve pulse inverters phase shifted by 15° from each other can provide a 24-pulse inverter, with much lower harmonics in the ac side. The ac output voltage will have 24r±1 order harmonics, i.e., 23rd, 25th, 47th, 49th,……
harmonics, with magnitudes of $1/23^{rd}$, $1/25^{th}$, $1/47^{th}$, $1/49^{th}$,.... respectively, of the fundamental ac voltage. Thus the output voltage of twenty four pulse inverter is obtained as:

$$v_{ab=a} (t) = 4 \sum_{m=1}^{\infty} V_{ab=a, m} \sin\left(\omega t + 22.5^\circ m + 7.5^\circ x\right)$$ \hspace{1cm} (3.14)

$$v_{an=a} (t) = \frac{4}{\sqrt{3}} \sum_{m=1}^{\infty} V_{an=a, m} \sin\left(\omega t + 22.5^\circ m - 22.5^\circ x\right)$$ \hspace{1cm} (3.15)

where $x = 1$ for positive sequence harmonics

$x = -1$ for negative sequence harmonics

$\forall m = 24r \pm 1$, $r = 0,1,2,.....$

In order to eliminate the 23^{rd} and 25^{th} harmonic components, the conduction angle of the inverter is set to $\sigma = 172.5^\circ$ by choosing $m = 24$ in equation (3.1). This configuration produces almost a near sinusoidal output voltage since the lowest significant harmonic component is the 47^{th} harmonic.

3.3.2 Harmonic Neutralisation

The magnitude and phase angle of the harmonic components present at the outputs of the diode clamped multilevel inverters VSI$_1$ to VSI$_4$ are given in Figs.3.6-3.9 respectively. Since the harmonic components 5, 7, 17, 19, 29, 31, 41, 43… present in adjacent inverters (VSI$_1$ and VSI$_2$, VSI$_3$ and VSI$_4$) are out of phase and have the same magnitude, they cancel each other. Similarly the harmonic components 11, 13, 35, 37… present in the adjacent pairs of inverters are also cancelled. The harmonic components 23, 25, 47, 49… which are in phase in all the four inverters add up with each other. This results to a 24-pulse inverter with the harmonic components in the order of $24r\pm1$. Fig.3.10 displays the harmonic components of the 24-pulse inverters.
Fig. 3.6 Three level VSI\(_1\) harmonics

Fig. 3.7 Three level VSI\(_2\) harmonics

Fig. 3.8 Three level VSI\(_3\) harmonics
3.4 REALISATION OF STATCOM OPERATION

The combined multipulse multilevel inverter topology is connected in shunt with the transmission line using a step-down transformer having leakage reactance X_L as shown in Fig. 3.11. The ac voltage difference across this transformer leakage reactance produces reactive power exchange between the inverter and the power system at the point of common coupling.
The magnitude of the inverter output voltage (v_s) is controlled to be greater than the voltage (v_m) at the PCC in order to operate the inverter in the capacitive mode. In contrast, the magnitude of the output voltage of the inverter is controlled to be less than that of the power system at the PCC when it is desired to absorb the reactive power from the grid [1, 14, 42, 97]. The inverter absorbs a small amount of real power from the ac system to replenish its internal losses and keep the capacitor voltage at the desired level. The losses can be supplied from the ac system by making the output voltage of the inverter lag the ac system voltage by a small angle ϕ. This phase difference ϕ is achieved by adjusting the phase angle of the sinusoidal modulating signal in SPWM.

3.4.1 STATCOM Model

In order to establish the mathematical model of the STATCOM [34, 35, 54, 55] the following assumptions are made:

i) The system parameters and the system voltages are three phase balanced.

ii) All losses in the STATCOM and transformer are represented by an equivalent resistance R, while the transformer inductance is represented by an equivalent inductance L.
Harmonics produced by the inverter are negligible. Hence the inverter can be represented by sinusoidal voltage sources.

Fig. 3.12 shows the equivalent circuit of the STATCOM connected to the power system. The reactive power supplied by the STATCOM is either inductive or capacitive depending upon the relative magnitude of fundamental component of v_s with respect to v_m. If $|v_m| > |v_s|$, the VSI draws reactive power from the ac bus whereas if $|v_m| < |v_s|$, it supplies reactive power to the ac system.

![Fig. 3.12 Equivalent circuit of STATCOM](image)

The equations governing the instantaneous values of the three phase voltages across the two sides of STATCOM and the current flowing into it are given by

$$
\begin{align*}
\frac{di_a}{dt} &= -\frac{R}{L} i_a + \frac{1}{L} (v_{ma} - v_{sa}) \\
\frac{di_b}{dt} &= \frac{R}{L} i_b + \frac{1}{L} (v_{mb} - v_{sb}) \\
\frac{di_c}{dt} &= \frac{R}{L} i_c + \frac{1}{L} (v_{mc} - v_{sc})
\end{align*}
$$

where i_s is the STATCOM current

Since the system is assumed to be a balanced one, it can be transformed into a synchronous d-q-o frame by applying Park’s transformation.
\[
\begin{align*}
\frac{di_{sd}}{dt} &= \left(\frac{-R}{L} \omega \right) i_{sd} + \frac{1}{L} \left(v_{md} - v_{sd} \right) \\
\frac{di_{sq}}{dt} &= \left(\frac{-R}{L} \omega \right) i_{sq} + \frac{1}{L} \left(v_{mq} - v_{sq} \right)
\end{align*}
\]

(3.17)

where \(\omega \) is the synchronous angular speed of the network voltage.

The power balance equation between the dc and ac terminals of VSI is

\[
P = V_{dc}I_{dc} = \frac{3}{2} \left(V_{sd}I_{sd} + V_{sq}I_{sq} \right)
\]

(3.18)

Since PWM technique is used in STATCOM, and all the voltage harmonics produced by the inverter are neglected, the equation relating the dc side and ac side can be written as

\[
V_{sd} = kM_a V_{dc} \cos \phi
\]

(3.19)

\[
V_{sq} = kM_a V_{dc} \sin \phi
\]

(3.20)

where \(\phi = \tan^{-1} \left(\frac{V_{sq}}{V_{sd}} \right) \) is the angle between the inverter voltage and the system voltage.

\[
M_a = \frac{\sqrt{V_{sd}^2 + V_{sq}^2}}{kV_{dc}}
\]

is the modulation index of the PWM inverter.

\(k \) is the ratio between the ac and dc voltage of the inverter.

\(V_{dc} \) is the dc voltage.

Substituting \(V_{sd} \) and \(V_{sq} \) in equation (3.18)

\[
V_{dc}I_{dc} = \frac{3}{2} \left(kM_a V_{dc} \cos \phi I_{sd} + kM_a V_{dc} \sin \phi I_{sq} \right)
\]

\[
\therefore I_{dc} = \frac{3kM_a}{2} \left(I_{sd} \cos \phi + I_{sq} \sin \phi \right)
\]

\[
= C_{dc} \frac{dV_{dc}}{dt} = \frac{3kM_a}{2} \left(I_{sd} \cos \phi + I_{sq} \sin \phi \right)
\]

\[
\therefore \frac{dV_{dc}}{dt} = \frac{3kM_a}{2 C_{dc}} \left(I_{sd} \cos \phi + I_{sq} \sin \phi \right)
\]

(3.21)

59
Using equations (3.17) and (3.21), the complete system equation could be expressed in matrix form as follows:

$$\begin{pmatrix}
\frac{d_{id}}{dt} \\
\frac{d_{iq}}{dt} \\
\frac{dV_{dc}}{dt}
\end{pmatrix} =
\begin{pmatrix}
\frac{-R}{L} & \omega & \frac{-kM_a}{L} \cos \phi \\
\omega & \frac{-R}{L} & \frac{-kM_a}{L} \sin \phi \\
\frac{3kM_a}{2C_{dc}} \cos \phi & \frac{3kM_a}{2C_{dc}} \sin \phi & 0
\end{pmatrix}
\begin{pmatrix}
i_{id} \\
i_{iq} \\
v_{dc}
\end{pmatrix}
+ \begin{pmatrix}
1 \\
0
\end{pmatrix} \begin{pmatrix}
v_{md} \\
v_{mq}
\end{pmatrix} \quad (3.22)
$$

Using equation (3.17), the reference input to the PWM modulator is derived as follows:

$$V_{sd} = V_{md} + L \omega I_{sq} - \left(R I_{sd} + L \frac{dI_{sd}}{dt} \right) \quad (3.23)$$

$$V_{sq} = V_{mq} - L \omega I_{sd} - \left(R I_{sq} + L \frac{dI_{sq}}{dt} \right) \quad (3.24)$$

The equations (3.23) and (3.24) are realized to establish the STATCOM operation in the closed loop control scheme.

3.5 CONTROL ALGORITHM FOR STATCOM

A complete closed loop control scheme for operating the realized STATCOM in the automatic voltage control mode is shown in Fig.3.13. The shunt converter either absorbs or injects reactive power with the ac grid so as to maintain the transmission line voltage to a reference value at the PCC. The injection/absorption of reactive power using STATCOM requires two control loops namely the outer voltage control loop and the inner reactive current control loop. The outer dc voltage controller sets the real current reference for the inner current controller. The reactive current reference is determined by the ac bus voltage regulator. In the inner current controller a decoupled current control strategy is employed in order to independently control the real and reactive power components.
Fig. 3.13 Closed loop control scheme of STATCOM

A phase locked loop is used to determine the instantaneous angle θ of the three-phase line voltage V_m sensed at bus B_2 of Fig.3.11. The three-phase voltages sensed at B_2 and inverter currents are transformed into two-phase quantities using Park’s transformation, which gives $d – q$ axis voltage and current for the controller. The d-axis reference current i_{sd}^* obtained from the dc voltage controller is compared with the actual d axis current and stabilized through PI controller to get the equivalent d axis reference voltage. Similarly the actual q axis current i_q is compared with the reference current i_{sq}^* derived from the ac voltage controller and the error so obtained is stabilized through another PI controller to get the equivalent q axis reference voltage. The parameters of these PI controllers are tuned in order to minimize the integral square error (ISE) and integral time absolute error (ITAE). The optimal parameters of PI controllers are tabulated in Table 3.3. Further the equations (3.23) and (3.24) are realized in the inner current control loop in order to obtain the reference wave for the PWM modulator.
Table 3.3 PI controller parameters of the STATCOM

<table>
<thead>
<tr>
<th>PI Controllers</th>
<th>K_p</th>
<th>K_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI_1</td>
<td>0.8</td>
<td>8</td>
</tr>
<tr>
<td>PI_2</td>
<td>2.56</td>
<td>9.2</td>
</tr>
<tr>
<td>PI_3</td>
<td>0.1</td>
<td>40</td>
</tr>
<tr>
<td>PI_4</td>
<td>0.1</td>
<td>40</td>
</tr>
</tbody>
</table>

3.6 SIMULATION RESULTS AND DISCUSSION

The 24-pulse inverter obtained by combining MPI and MLI is simulated using MATLAB/Simulink to analyze the harmonics in its output voltage. A dc source of 2000 volts is used at the input side. The load is a star connected RL load of 10 ohm resistance and 0.1 H inductance connected in series. In order to reduce the magnitude of 23rd and 25th harmonics the conduction angle of the inverter is set to $\sigma = 172.5^\circ$. The output voltage expressions derived for the 24-pulse inverter are validated with simulated results and are highlighted in Table 3.4. The combined multipulse-multilevel inverter configuration produces almost a near sinusoidal output voltage with a total harmonic distortion of about 3.81% as depicted in Fig.3.14.

Table 3.4 Comparison of analytical and simulated results of the combined MP-MLI

<table>
<thead>
<tr>
<th>Significant Harmonics</th>
<th>Peak output voltage (volts)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analytical</td>
<td>Simulation</td>
</tr>
<tr>
<td>23rd</td>
<td>25.095</td>
<td>25.21</td>
</tr>
<tr>
<td>25th</td>
<td>23.087</td>
<td>24.27</td>
</tr>
<tr>
<td>47th</td>
<td>187.36</td>
<td>189.56</td>
</tr>
<tr>
<td>49th</td>
<td>179.715</td>
<td>183.02</td>
</tr>
</tbody>
</table>
a) Output voltage

b) THD

Fig. 3.14 Multipulse-multilevel inverter output voltage and its THD

The same 24-pulse inverter is used to realize the static synchronous compensator connected to the sample power system described in Fig. 3.11. The steady state and transient response of the system is evaluated through simulation.

3.6.1 Steady State Response

The initial load in the system is with the ratings of $P = 300$ MW, $Q_L = 150$ MVAR connected at load bus B3 through the circuit breaker CB1. The transmission line current lags the voltage by 60° as seen in Fig. 3.15 before $t = 0.4$ s resulting in a power factor of 0.5 lag and the bus voltage magnitude is at 0.975 pu as the STATCOM is inactive.
Fig. 3.15 Transmission line current and voltage with and without STATCOM

At $t = 0.4$ s, the static synchronous compensator, in the capacitive mode is connected to the power system network by switching on the circuit breaker CB3. The STATCOM controller increases the modulation index from 0.74 to 0.778 as shown in Fig. 3.16 in order to increase the voltage magnitude to be higher than the bus voltage magnitude which enables the injection of 0.24 pu of reactive power into the ac power system as shown in Fig. 3.17.
Fig. 3.17 Reactive power injected by the STATCOM – single load

The d-q components of the STATCOM current are shown in Fig.3.18. It draws a very small amount of real power from the network to compensate for the losses in the inverter switches and coupling transformer and maintain the dc link voltage constant. This is apparent from the i_d component of current depicted in Fig. 3.18.

Fig. 3.18 d-q components of STATCOM current – single load
The dc link voltage is maintained constant at the desired set reference value as shown in Fig.3.19. It is observed from the Fig.3.20 that the ac terminal voltage settles to 1 pu. The phase difference between the transmission line current and the voltage is reduced to 14.5° as described in Fig.3.15 which improves the power factor of the line from 0.5 lag to 0.968 lag.

![Fig. 3.19 DC side voltage of the inverter – single load](image1)

![Fig. 3.20 Transmission line voltage – single load](image2)
3.6.2 Transient Response of the STATCOM under Variable Load

Figs.3.21-3.27 demonstrate the response of the STATCOM when load variations are introduced at \(t = 0.4 \) s and \(t = 0.6 \) s respectively. Initially the inductive Load \((P = 300 \text{ MW}, Q_L = 150 \text{ MVAR})\) is connected to the bus system through the circuit breaker CB\(_1\). The bus voltage magnitude is 0.975 pu and the phase lag is 60°. When the STATCOM is switched on at \(t = 0.2 \) s, it injects reactive power to the system thereby increasing the bus voltage magnitude to 0.999 pu and reducing the power factor to 0.968 lag \((\phi = 14.5^\circ \text{ lag})\).

An additional inductive load of \(P = 300 \text{ MW}, Q_L = 180 \text{ MVAR} \) (Load 2) is added to the power system at \(t = 0.4 \) s by switching ON the circuit breaker CB\(_2\). The new inductive load connected to the bus system requires further reactive power compensation. Therefore the STATCOM controller increases the modulation index from 0.778 to 0.83 as shown in Fig.3.21 which provides a total reactive power injection to 0.49 pu as seen in Fig.3.22. The corresponding variations in the d-q components of the STATCOM current are clearly depicted in the Fig.3.23. In order to maintain the dc link voltage to the desired reference value it draws still more real power from the network and this result an increase in \(i_d \) component of STATCOM current.

![Fig. 3.21 Variation of modulation index under varying load](image-url)
Fig. 3.22 Reactive power injected by the STATCOM under varying load

Fig. 3.23 d-q components of STATCOM current under varying load
The bus voltage is regulated to 1.002 pu as in Fig. 3.24 and the phase angle is corrected to 15° lag which leads to a power factor of 0.9659 lag. Thus the line current is almost in phase with the voltage as depicted in Fig. 3.25. The phase angle difference between the line current and voltage is separately highlighted in Fig. 3.26.

Fig. 3.24 Transmission line voltage under varying load

Fig. 3.25 Transmission line voltage and current under varying load
At \(t = 0.6 \) s Load 2 is withdrawn and a capacitive load of \(P = 300 \) MW and \(Q_C = 100 \) MVAR (Load 3) is added to the network in addition to Load 1. Hence STATCOM injects relatively less amount of reactive power and regulates the bus voltage to 1.002 pu. The corresponding variations in \(i_d \) and \(i_q \) are clearly elucidated in the simulation results. It is evident from Fig.3.27 that the dc link voltage is maintained constant at the desired set reference value over a wide range of load. The results are summarized in Table 3.5.
Table 3.5 Dynamic response of STATCOM for load variations

<table>
<thead>
<tr>
<th>Duration (s)</th>
<th>STATCOM</th>
<th>Load</th>
<th>Modulation Index (M_a)</th>
<th>Injected Reactive Power, Q_{inj} (pu)</th>
<th>ϕ (lag)</th>
<th>Bus Voltage (pu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 0.2</td>
<td>Not Connected</td>
<td>$P = 300$MW $Q_L = 150$MVAR</td>
<td>-</td>
<td>-</td>
<td>60°</td>
<td>0.975</td>
</tr>
<tr>
<td>0.2-0.4</td>
<td>Connected</td>
<td>$P = 300$MW $Q_L = 150$MVAR</td>
<td>0.778</td>
<td>0.24</td>
<td>14.5°</td>
<td>0.999</td>
</tr>
<tr>
<td>0.4-0.6</td>
<td>Connected</td>
<td>$P = 300$MW $Q_L = 150$MVAR $P = 300$MW $Q_L = 180$MVAR</td>
<td>0.83</td>
<td>0.49</td>
<td>15.1°</td>
<td>1.002</td>
</tr>
<tr>
<td>0.6-0.8</td>
<td>Connected</td>
<td>$P = 300$MW $Q_L = 150$MVAR $P = 300$MW $QC = 100$MVAR</td>
<td>0.76</td>
<td>0.13</td>
<td>15.5°</td>
<td>1.002</td>
</tr>
</tbody>
</table>

It is seen from the Fig.3.25 that there is a dip in the supply voltage and the supply currents are lagging. However, when the STATCOM is connected to the power system a uniform voltage profile is maintained and the three phase supply currents are almost in phase with the supply voltage under varying load. Hence it is observed from the simulation results that the STATCOM plays a vital role in improving the power factor and regulating the bus voltage.

3.7 SUMMARY

A combined multipulse-multilevel inverter topology suitable for high power applications has been proposed. The pulse pattern and the phase shifting transformer arrangement for harmonic neutralization have been discussed in detail. The analytic expressions for the proposed inverter topology are derived using Fourier series and found to closely agree with the simulated results. This new inverter configuration produces almost three phase sinusoidal voltage and maintains THD well below 4%. It has been used to realize the operation of STATCOM and its performance is evaluated through simulation. The closed loop controller based on decoupled control strategy has been developed and found to be effective over a wide range of power system operating conditions.