Conclusions
CONCLUSIONS

The study clearly demonstrated that SO₂ at 0.05, 0.1 and 0.2 ppm and SAR at pH 5.0, 4.0 and 3.0 have significant negative impact on the yield of wheat. Both pollutants interacted antagonistically with A. tritici. Even lower doses 0.05 ppm of SO₂ and pH 5.0 were able to check A. tritici development. If these lower doses apply in the field severely infected with A. tritici (at epidemic level), the disease may be controlled with minimum damage to crop. However, there is great risk of environmental pollution. Fly ash also interacted antagonistically with A. tritici. Interestingly, the fly ash was found beneficial to wheat at lower dose (1.25 g m⁻²) of foliar application. At this dose nematode was also suppressed. Soil applications of fly ash from 10 to 40% levels were found beneficial to this crop, maximum being at 30% level. At this level A. tritici was also completely checked. If fly ash fulfills food safety and environmental quality standards, its soil application as nematicides-cum-fertilizer would be an eco-friendly and gainful utilization, in view of the continuous production of large quantities of fly ash waste.