Chapter 1: Review of Literature

1. Vaccine and Vaccination
 1.1. Vaccination: a prophylactic measure to control infectious diseases
 1.2. Live vaccine
 1.3. Subunit vaccine
 1.4. Genetic vaccine
 1.4.1. Purified DNA
 1.4.2. Virus mediated gene delivery
 1.4.3. Bacterial delivery
 1.5. Combination vaccine
 1.5.1. DTD vaccine
 1.5.2. Influnza vaccine
 1.5.3. Polio vaccine
 1.5.4. MMR vaccine
 1.5.5. Pnemococcal vaccine
 1.5.6. Meningococcal vaccine
 1.6. Marker vaccine

2. Attributes of successful vaccination

3. Immunological adjuvants
 3.1. Mineral salts
 3.2. Microbial components
 3.2.1. Muramyl dipeptide
 3.2.2. Monophosphoryl lipid A
 3.2.3. Bacterial DNA
 3.3. Cytokines
 3.4. Oil emulsion and surfactant based adjuvants
 3.4.1. Freunds adjuvant
 3.4.2. MF 59 adjuvant

4. Immunological perspective of controlled antigen delivery
 4.1. Induction of affinity maturation and isotype switching
 4.2. Induction of immune memory
 4.3. Manipulation of Th1/Th2 responses

5. Particulate antigen delivery system
 5.1. Liposomes
 5.2. Suitability of liposomes as vaccine carriers
 5.3. Strategies for optimization of liposomal adjuvanticity
 5.4. Fusogenic liposomes derived from microbial lipids
6.1. Virosomes 19-23
6.2. Archaeosomes 23-25
6.3. Yeast lipid liposomes 25-26
6.4. Niosomes 27-27

7. Plasmodium infection 28-39
7.1. Life cycle of Plasmodium 30-30
7.2. Pathogenesis and Epidemiology 30-30
7.3. Vaccinology 31-39
 7.3.1. Pre-erythrocyte vaccines 32-33
 7.3.2. Asexual blood stage vaccines 33-35
 7.3.3. Transmission blocking vaccines 35-36
 7.3.4. Subunit vaccination 36-37
 7.3.5. Liposomal malaria vaccine 37-39

8. Immunopotentiating role of immunomodulator 39-41
 8.1. Immunomodulator 39-40
 8.2. Plant derived Products as immunomodulator 40-41

9. Picrorhiza kurroa 41-42
 9.1. Active constituents 41-42
 9.2. Mechanism of action 41-42

Chapter 2: Use of Saccharosomes in Perspective of Vaccine Development. 43-60
1. Introduction 43-43

2. Materials and Methods 43-47
 2.1. Animals 43-43
 2.2. Chemicals and reagents 43-44
 2.3. S. cerevisiae lipid 44-44
 2.4. Preparation of liposomes 44-44
 2.5. Estimation of protein content in Liposomes 44-45
 2.6. Immunization 45-45
 2.7. Cell preparation 45-45
 (a) CD8\(^+\) T cells 45-45
 (b) CD4\(^+\) T cells 45-45
 2.8. CD8\(^+\) T lymphocyte response 46-46
 (a) Target cells 46-46
 (b) Cytotoxicity assay 46-46
 2.9. CD4\(^+\)T-cell proliferation 46-46
 2.10. Lymphokine assays. 47-47
 2.11. Determination of OVA-specific IgG isotypes by ELISA. 47-47

2.12. Statistical analysis 47-47

3. Results: 47-58
 3.1. Delivery of the antigen entrapped in the fusogenic yeast-lipid
 liposomes elicits effective immune response 47-52
 (a) CD8\(^+\) T cell response 47-48
 (b) CD4\(^+\) T cell response 52-52
 3.2. Antigen encapsulated into yeast-lipid liposomes predominantly
 Enhances the production of IL-4. 52-53
 3.3. Humoral immune response 58-58

4. Discussion 58-60

Chapter 3A: Prophylactic implication of S. Cerevisiae lipid liposomes
against Plasmodium yoelii infection in BALB/c mice 61-96
1. Introduction
2. Materials and methods
 2.1. Animals and Experimental infection
 2.2. Chemicals and Reagents
 2.3. S. cerevisiae liquid
 2.4. Antigen preparation
 2.5. Preparation of liposomes
 2.6. Estimation of protein content in saccharosomes
 2.7. Immunization
 2.8. Immunoblot analysis
 2.9. IgG response in immunized mice
 2.10. Assessment of delayed-type hypersensitivity (DTH) response
 2.11. Isolation of macrophages and macrophage uptake assay
 2.12. Saccharosomes induces reactive oxygen and nitrogen species in the immunized animals
 2.13. Saccharosome mediated induction of Th1/Th2 cytokines
 2.14. Lymphocyte proliferation assay
 2.15. FACS analysis
 2.16. Flow cytometric detection of ROI
 2.17. Statistics
3. Results:
 3.1. Immunoblot analysis
 3.2. Antibody response
 3.3. DTH responses
 3.4. In vitro cell fusion studies
 3.5. Saccharosome induces the ROI
 3.6. Effect of saccharosome mediated immunization on induction of Th1/Th2 cytokines
 3.7. T-lymphocyte proliferation in response to immunization with saccharosome encapsulated sAg
 3.8. Saccharosome encapsulated sAg induces specific CD4+ and CD8+ T-cell immunity in BALB/c mice
 3.9. Saccharosome encapsulated sAg upregulates CD80/86 molecules on antigen presenting cells
 3.10. Potential of saccharosome based sAg vaccine in Imparting protection against P. yoelii infection in Balb/c mice
4. Discussion
Chapter 3 (B): Potential of niosome based vaccine against experimental murine malaria
1. Introduction
2. Materials and Methods
 2.1. Animals and Experimental infection
 2.2. Chemicals and Reagents
 2.3. Antigen preparation
 2.4. Preparation of niosomes
 2.5. Preparation of dried reconstituted vesicles
 2.6. Estimation of protein content in niosomes
 2.7. Immunization
 2.8. Lymphocyte proliferation assay
 2.9. FACS analysis
2.10. Flow cytometric detection of ROI by CM-H$_2$DCFDA
2.11. Assessment of delayed type hypersensitivity (DTH) response
2.12. Estimation of cytokine levels
2.13. Determination of IgG and its isotype titre by ELISA
2.14. Immunoblot analysis
2.15. Statistical Analysis

3. Result
3.1. T-lymphocyte proliferation in response to immunization with niosome encapsulated sAg
3.2. Niosome encapsulated sAg induces specific CD4$^+$ and CD8$^+$ T-cell immunity in BALB/c mice
3.3. Niosome encapsulated sAg upregulates CD80/86 molecules on antigen presenting cells
3.4 Niosome induced ROS and reactive nitrogen species in the immunized animals
3.5. DTH responses
3.6. Immunization with niosome-entrapped sAg enhances Production of protective cytokines
3.7. Antibody response
3.8. Potential of niosome based sAg vaccine in imparting Protection against P.yoelii infection in Balb/c mice

4. Discussion

Chapter 4: Immunomodulator effect of picroliv and its potential in treatment against resistant $Plasmodium$ yoelii (MDR) infection in mice

1. Introduction
2. Materials and Methods
 2.1. Chemicals
 2.2. Animals and Parasite
 2.3. Immunization
 2.4. Macrophages
 2.5. T-cell proliferation Assay
 2.6. Determination of antigen specific IgG isotypes by ELISA
 2.7. Effect of picroliv treatment on efficacy of chloroquine against $Plasmodium$ yoelii infection
2.8. Statistics

3. Results
3.1. Picroliv augments proliferation of OVA-specific T-cells in BALB mice
3.2. Picroliv treatment increases the secretion of the IgG2a isotype of antibodies
3.3. Effect of Co-administration of picroliv in combination with chloroquine against drug resistant isolate of $P.yoelii$ in BALB/c mice

4. Discussion
References