CHAPTER VI

THE EXPANSION OF DISCRETE FUNCTIONS IN INFINITE SERIES

The discrete power z^n and $(z-z_0)^n$ can be utilized in series of the form

$$
\sum_{j=0}^{\infty} a_j z^j \quad \text{and} \quad \sum_{j=0}^{\infty} a_j (z-z_0)^j.
$$

In this chapter series of the above type are used to obtain discrete analogues of the exponential function and of the general power $(z-z_0)^a$.

Finally it is shown that any (p,q)-analytic function can be represented by a discrete analogue of Maclaurin's series.

§ 1. DISCRETE EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS—In the monodiffirc theory, Isaacs [72] obtained, as an analogue of the exponential function, the function $\mathbb{2} (1+i)^x$ which satisfies the equation, $\Delta f(z) = f(z)$, where Δ is the monodiffirc difference operator.

Duffin [33] derived a similar function $\mathbb{3} (\frac{1+i}{1-i})^y$ which satisfies $\Delta f(z) = f(z)$, where Δ is the discrete operator of
Apart from a few simple properties, a very limited study has been made of the discrete exponential functions defined by the above authors.

In this section a \((p,q)\)-analytic function \(e(z)\) is defined which is an analogue of the classical function \(e^z\). An inverse function \(E(z)\), satisfying \(e(z) \ast E(z) = 1\), is derived and \((p,q)\)-analytic analogues of the trigonometric functions are obtained.

From (1.3.12), a \(p\)-analogue of the exponential function \(e^x\) is given by \(e_p((1-p)x)\).

The discrete analogue of \(e_p((1-p)x)\) can be found by an application of the continuation operator \(C_x^y\) as follows:

Define the function \(e(z)\) by the equality,

\[
e(z) \equiv C_y \left[e_p((1-p)x) \right] \quad \ldots (6.1.1)
\]

Hence by (1.3.12),

\[
e(z) = C_y \left[\sum_{k=0}^{\infty} \frac{(1-p)^k}{(1-p)_{k,p}} x^k \right]; \quad |x| < \frac{1}{(1-p)}
\]

\[
= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \int_{p,x}^{\infty} \left[\sum_{k=0}^{\infty} \frac{(1-p)^k}{(1-p)_{k,p}} x^k \right]
\]
and so by corollary 2.3.2 and (5.1.3)

\[e(z) = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)^{j,q}} (iy)^j \sum_{k=j}^{\infty} \frac{(1-p)^{k-j}}{(1-p)^{k,p}} \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)^{j,q}} (iy)^j \sum_{k=0}^{\infty} \frac{(1-p)^k}{(1-p)^k} x^{k-j} \]

the two series being absolutely convergent if

\[|x| < \frac{1}{(1-p)} \quad \text{and} \quad |y| < \frac{1}{(1-q)} \]

or (using the norm of theorem 5.2.2), \(\|(1-p)x + (1-q)iy\| < 1 \). Hence,

\[e(z) = e_q((1-q)iy) e_p((1-p)x) \quad \ldots (6.1.2) \]

Now the series representation of \(e_q(x) \) has analytic continuation given by the infinite product,

\[e_q(x) = \frac{1}{(1-x)_{\infty,q}} \]

which converges for all \(x \) such that \(x \neq q \); \(n \) a non-negative integer.

It follows that \(e(z) \), as given by (6.1.2), has analytic continuation.
\[e(z) = \frac{1}{(1-(1-p)x)^{\infty, p} (1-(1-q)iy)^{\infty, q}} \] (6.1.3)

Since \(y \) is real, the factor \(\frac{1}{(1-(1-q)iy)^{\infty, q}} \) can not contribute a pole and so \(y \) is unrestricted. However, the values of \(x \) are restricted by the condition \(x \neq (1-p)^{-1} \) \(^{-n} \) a non-negative integer, since there are poles at these points. This problem can be overcome by suitably choosing the lattice to avoid the singular values of \(x \).

The above function is a reasonable analogue of the exponential function as is justified by the following theorem:

THEOREM 6.1.1. The function \(e(z) \) is \((p,q) \)-analytic, it satisfies the equation,

\[\oint e(z) = e(z) \]

and in fact for \(\| (1-p)x+(1-q)iy \| < 1 \),

\[e(z) = \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)^{j,p}} z^j. \]

PROOF: \[\oint_{p,x} [e(z)] = \frac{e_q((1-q)iy)}{(1-p)x} \left[\frac{1}{(1-(1-p)x)^{\infty, p}} - \frac{1}{(1-(1-p)px)^{\infty, p}} \right] \]
eq((1-q)iy)
= \frac{e_q((1-q)iy)}{(1-(1-p)x)_\infty\cdot p}
= e_q((1-q)iy)\cdot e_p((1-p)x)
= e(z).

Similarly,

\mathcal{J}_{q,y}[e(z)] = e(z).

Hence e(z) is (p,q)-analytic and satisfies,

\mathcal{J}[e(z)] = e(z).

If \| (1-p)x + (1-q)iy \| < 1 then \| x \| < \frac{1}{1-p} and \| y \| < \frac{1}{1-q}

and so each of the series representations of e_p((1-p)x) and e_q((1-q)iy) is absolutely convergent. Hence

\begin{align*}
e(z) &= \left(\sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)^{j,p}} \cdot x^j \right) \cdot \left(\sum_{k=0}^{\infty} \frac{(1-q)^k}{(1-q)^{k,q}} \cdot (iy)^k \right) \\
&= \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)^{j,p}} \cdot \sum_{k=0}^{j} \frac{(1-p)^{j,p}(1-q)^k}{(1-p)^{j-k,p}(1-q)^{k,q}(1-p)^k} \cdot x^{j-k} \cdot (iy)^k
\end{align*}
and so by (5.1.7),

\[e(z) = \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_j} z^j, \]

..... (6.1.4)

the series being absolutely convergent if \(|(1-p)x+(1-q)i y| < 1\).

This proves the theorem.

Note that since \(\lim_{p \to 1} (1-p)^n = 1 \), \(\lim_{q \to 1} (1-q)^k - 1 \),

\[\lim_{n \to \infty} (n!) = n \]

and \(\lim_{p \to 1} \lim_{q \to 1} z^n = z \), then

\[\lim_{p \to 1} \lim_{q \to 1} e(z) = e^z. \]

The series in (6.1.4) converges in the region

\[||(1-p)x+(1-q)i y|| < 1, \]

whereas the series expansion of \(e^z \) converges everywhere. However for \(p \) and \(q \) close to unity the condition \(||(1-p)x+(1-q)i y|| < 1 \) is not very restrictive.

From (1.3.12) and (1.3.13) the function \(E_q(x) \) is defined by

\[E_q(x) = \frac{1}{e_q(x)}. \]

If the discrete function \(E \) is defined by
\[E(z) = C_y \left[E_p((1-p)x) \right] \quad \text{...... (6.1.5)} \]

it follows by the definition of the operator * that,

\[(e \ast E)(z) = C_y \left[e(x,0)E(x,0) \right] \]

and so by (6.1.2),

\[(e \ast E)(z) = C_y \left[e_p((1-p)x)E_p((1-p)x) \right] = C_y (1), \]

and by (4.3.1),

\[(e \ast E) = 1. \]

Hence with respect to the operator * the function \(\Xi \) is an inverse of the discrete exponential function \(e \).

A discrete series expansion for \(E \) can be derived as follows:

\[E(z) = C_y \left[\Xi_p((1-p)x) \right] \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left(iy \right)^j q^j \left[E_p((1-p)x) \right] \]

and so by (1.3.13),
\[E(z) = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left[\sum_{k=0}^{\infty} \frac{(-1)^j}{(1-p)^{k,j}} \right] \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \sum_{k=0}^{\infty} \frac{(-1)^j}{(1-p)^{k+j}} \cdot \frac{p^{(k+j)(k+j-1)/2}}{(1-p)^{k+j}} \cdot \frac{(-1)^j (k+j)(k+j-1)/2}{(1-p)^{k+j}} \cdot \frac{1}{(1-p)^{j-k}} \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left[\sum_{k=0}^{j} \frac{(-1)^j}{(1-p)^{k+j}} \cdot \frac{p^{(k+j)(k+j-1)/2}}{(1-p)^{k+j}} \cdot \frac{(-1)^j (k+j)(k+j-1)/2}{(1-p)^{k+j}} \cdot \frac{1}{(1-p)^{j-k}} \right] \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left[\sum_{k=0}^{j} \frac{(-1)^j}{(1-p)^{k+j}} \cdot \frac{p^{(k+j)(k+j-1)/2}}{(1-p)^{k+j}} \cdot \frac{(-1)^j (k+j)(k+j-1)/2}{(1-p)^{k+j}} \cdot \frac{1}{(1-p)^{j-k}} \right] \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left[\sum_{k=0}^{j} \frac{(-1)^j}{(1-p)^{k+j}} \cdot \frac{p^{(k+j)(k+j-1)/2}}{(1-p)^{k+j}} \cdot \frac{(-1)^j (k+j)(k+j-1)/2}{(1-p)^{k+j}} \cdot \frac{1}{(1-p)^{j-k}} \right] \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left[\sum_{k=0}^{j} \frac{(-1)^j}{(1-p)^{k+j}} \cdot \frac{p^{(k+j)(k+j-1)/2}}{(1-p)^{k+j}} \cdot \frac{(-1)^j (k+j)(k+j-1)/2}{(1-p)^{k+j}} \cdot \frac{1}{(1-p)^{j-k}} \right] \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left[\sum_{k=0}^{j} \frac{(-1)^j}{(1-p)^{k+j}} \cdot \frac{p^{(k+j)(k+j-1)/2}}{(1-p)^{k+j}} \cdot \frac{(-1)^j (k+j)(k+j-1)/2}{(1-p)^{k+j}} \cdot \frac{1}{(1-p)^{j-k}} \right] \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left[\sum_{k=0}^{j} \frac{(-1)^j}{(1-p)^{k+j}} \cdot \frac{p^{(k+j)(k+j-1)/2}}{(1-p)^{k+j}} \cdot \frac{(-1)^j (k+j)(k+j-1)/2}{(1-p)^{k+j}} \cdot \frac{1}{(1-p)^{j-k}} \right] \]

the series being absolutely convergent for all \(z \), which justifies the rearrangement of series used above. Also \(E(z) \) is \((p,q)\)-analytic.

Using the above definitions of \(e \) and \(E \), discrete
analytic analogues of trigonometric functions can be obtained. The resulting functions have properties in common with the q-analogues of trigonometric functions treated by Hahn [49]. If the analogues of sin and cos are defined as,

\[s(z) = \frac{1}{2i} [e(iz) - e(-iz)] \]

or

\[s(z) = \sum_{j=0}^{\infty} \frac{(-1)^j (1-p)^{2j+1}}{(1-p)_{2j+1}p} \frac{(2j+1)}{z^{2j+1}} \text{ if } ||(1-p)x+(1-q)iy|| < 1 \]

and

\[c(z) = \sum_{j=0}^{\infty} \frac{(-1)^j (1-p)^{2j}}{(1-p)_{2j}p} \frac{(2j)}{z^{2j}} \text{ if } ||(1-p)x+(1-q)|| < 1 \]

then it can easily be verified that \(s(z) \) and \(c(z) \) are \((p,q)\)-analytic and satisfy the p-difference (or q-difference) equation

\[\nabla^2 f(z) = - f(z) \]

Alternatively, discrete analogues of sin and cos can be defined as
\[S(z) = \frac{1}{2i} \left[\mathbb{E}(-iz) - \mathbb{E}(iz) \right] \]

\[= \sum_{j=0}^{\infty} \frac{(-1)^j p^{j(2j+1)} (1-p)^{2j+1}}{(1-p)^{2j+1},p} \frac{2j+1}{z} \]

and

\[C(z) = \frac{1}{2} \left[\mathbb{E}(iz) + \mathbb{E}(-iz) \right] \]

\[= \sum_{j=0}^{\infty} \frac{(-1)^j p^{j(2j-1)} (1-p)^{2j}}{(1-p)^{2j},p} \frac{2j}{z} \]

It follows that \(S(z), C(z) \) are \((p,q)\)-analytic and are solutions of the \(p \)-difference equation,

\[\nabla^2 [f(z)] = - p f(pz) \]

\[\cdots (6.1.1) \]

The following two addition formulae can easily be verified

\[(C * c)(z) + (S * s)(z) = 1 \]

\[(C * s)(z) - (S * c)(z) = 0. \]

From the above definitions it is clear that

\[\lim_{p \to 1} \lim_{q \to 1} e(z) = e^{z} \]
\[
\lim_{\substack{p \to 1 \\ q \to 1}} E(z) = e^{-z}
\]
\[
\lim_{\substack{p \to 1 \\ q \to 1}} s(z) = \sin z
\]
\[
\lim_{\substack{p \to 1 \\ q \to 1}} S(z) = \sin z
\]
\[
\lim_{\substack{p \to 1 \\ q \to 1}} c(z) = \cos z
\]
\[
\lim_{\substack{p \to 1 \\ q \to 1}} C(z) = \cos z.
\]

The series representation of \(e(z) \) given by,
\[
e(z) = \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} z^j,
\]
has been shown to be absolutely convergent for \(\| (1-p)x + (1-q)i y \| < 1 \). This leads to convergence conditions for more general power series of the form,
\[
f(z) = \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} a_j z^j \quad \ldots \ldots (6.1.11)
\]

Theorem 6.1.2. If \(\lim \sup |a_j| = a \), then the series (6.1.11) converges absolutely for all \(z \) such that,
\[\| (1-p)x + (1-q)i y \| < \frac{1}{a} \]

PROOF: From (6.1.4), if \(\lambda \) is a scalar constant then,

\[e(\lambda z) = \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} \lambda^j z^j \]

\[= \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} \lambda^j z^j \]

is absolutely convergent if \(|\lambda| \| (1-p)x + (1-q)i y \| < 1 \) (6.1.12)

Since \(\limsup |a_j|^{1/j} = a \) it follows that given \(\varepsilon > 0 \), there exists an integer \(J \) such that

\[|a_j| < (a+\varepsilon) \text{ for all } j \geq J \]

...... (6.1.13).

Now,

\[|f(z)| \leq \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} |a_j||z|^j \text{, and so by (6.1.13),} \]

\[|f(z)| \leq \sum_{j=0}^{J-1} \frac{(1-p)^j}{(1-p)_{j,p}} |a_j||z|^j + \sum_{j=J}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} (a+\varepsilon)^j |z|^j \]

By (6.1.12) the latter series is absolutely convergent for
(a + \varepsilon) \| (1-p)x + (1-q)iy \| < 1, \text{ or }

\| (1-p)x + (1-q)iy \| < \frac{1}{(a + \varepsilon)} < \frac{1}{a}.

This proves the theorem establishing a useful convergence criterion for series of the form (6.1.11).

§ 2. THE DISCRETE POWER \((z-z_0)^{(a)}\). — As mentioned in the previous chapter, analogues of the function \(z\) where \(n\) is a non-negative integer, have been studied in the theories of Isaacs and Duffin. It is believed that no analogue for the more general power \(z^a\) has been found in the discrete analytic function theory. In fact in Problem 1 of [30] the question of finding an analogue for the function \(z^\frac{1}{2}\) is posed.

In the \(q\)-function theory the function \((x-x_0)^a,q\) is defined by the infinite product,

\[(x-x_0)^a,q = x \frac{a (1-x_0/x)^\infty,q}{(1-q^a x_0/x)^\infty,q}.

This is now used to construct a \((p,q)\)-analytic analogue of the function \((z-z_0)^a\) where \(a\) is an arbitrary scalar constant.
The real function \((x-x_o)_{a,p}\) satisfies the following,

\[
Q_{p,x} (x-x_o)_{a,p} = \frac{(x-x_o)_{a,p} - (px-x_o)_{a,p}}{(1-p)x}
\]

and on simplification

\[
Q_{p,x} (x-x_o)_{a,p} = \frac{(1-p)^a}{(1-p)} (x-x_o)_{a-1,p}
\]

..... (5.2.1)

The discrete power \((z-z_o)^{(a)}\), \(z \in Q\), is defined as,

\[
(z-z_o)^{(a)} \equiv \sum_{j=0}^{\infty} (1-p)^{a-j} (1-q)^j \frac{1}{(1-p)^{a-j,p} (1-q)^j,q (1-p)^j (y-y_o)_{j,q} (x-x_o)_{a-j,p}}
\]

..... (6.2.2)

where \(a\) is an arbitrary scalar constant.

It can readily be shown that the series converges absolutely for all \(z \in Q\) such that \(y < |x_o|\). Moreover the function is \((p,q)\)-analytic in the region of convergence and satisfies the conditions,
(i) \[\mathcal{A}(z-z_0)^{(a)} = \frac{(1-p)^a}{(1-p)} (z-z_0)^{(a-1)} \]

(ii) \[(z-z_0)^{(0)} = 1 \]

(iii) \[0^{(a)} = 0, \quad a > 0. \]

Hence the function is a discrete analytic analogue of the classical power \((z-z_0)^a \). Furthermore in the special case \(a = n \) where \(n \) is a non-negative integer, the series \((6.2.2)\) can be seen to reduce to the series representation of \((z-z_0)^{(n)}\) given by theorem 5.3.1.

It can easily be shown that

\[
\lim_{p \to 1} \lim_{q \to 1} \frac{(1-p)^a, p}{(1-q)^a, q} (1-p)^j \]

= \[
\frac{a(a-1) \ldots \ldots \ldots (a-j+1)}{j!}
\]

and that \(\lim_{p \to 1} (x-x_0)^{(a-j)}, p = (x-x_0)^{a-j} \). Hence,

\[
\lim_{p \to 1} \lim_{q \to 1} (z-z_0)^{(a)} = (z-z_0)^a.
\]

When \(z_0 \) is real, the function \((z-z_0)^{(a)}\) can be expressed
in terms of the continuation operator C_y as follows.

By (6.2.2), when $y_0 = 0$,

$$
(z-x_0)^{(a)} = \sum_{j=0}^{\infty} \frac{(1-p)^a, p (1-q)^j}{(1-p)^{a-j, p} (1-q)^j, q (1-p)^j} (iy)^j (x-x_0)^{a-j, p}
$$

\[\ldots \ldots (6.2.3) \]

Now

$$
\frac{(1-p)^{a, p}}{(1-p)^{a-j, p}} = \frac{(1-p)^{a-j+1, p}}{(1-p)^{a+1, p}}
$$

$$
= (1-p)^{a-j+1, p}
$$

and so,

$$
(z-x_0)^{(a)} = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)^{j, q}} (iy)^j (1-p)^{a-j+1, p} (x-x_0)^{a-j, p},
$$

whence by (6.2.1)

$$
(z-x_0)^{(a)} = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)^{j, q}} (iy)^j \rho_p, x^j [(x-x_0)^{a-j, p}]
$$

$$
= C_y [(x-x_0)^{a-j, p}].
$$

\[\ldots \ldots (6.2.4) \]
The series (6.2.3) converges absolutely for all \(z \in \mathbb{Q} \) such that \(y < |x| \). If \(x = 0 \) it follows that the series diverges for all \(z \in \mathbb{Q} \). Hence the above expression for \((z-z_0)\)^{(a)} is only valid if \(z_0 \neq 0 \).

A product formula in terms of the convolution \(* \) is now deduced for functions of the form \((z-x_0)\)^{(a)}, \(x_0 \) real, 'a' arbitrary scalar constant. From Hahn [50], \((x-x_0)^\alpha (x-q x_0)^\beta = (x-x_0)^{\alpha+\beta}\), for general constants, \(\alpha, \beta \). Hence by (6.2.4) and the definition of \(* \),

\[
(z-x_0)^{(a)} * (z-q x_0)^{(b)} = C_y [(x-x_0)^\alpha (x-q x_0)^\beta]
\]

\[
= C_y [(x-x_0)^{\alpha+\beta}]
\]

\[
= (z-x_0)^{(\alpha+\beta)} \quad \cdots \quad (6.2.5)
\]

This is a generalization of the result obtained in (5.3.3) for the addition of integer powers.

A similar formula applies if \(z_0 \) is purely imaginary, however (6.2.5) does not follow for arbitrary complex \(z_0 \).

Some examples of the general discrete power \((z-z_0)^{(a)}\)
are now considered.

(a) \((z-z_0)^{\frac{1}{2}}\)

By (6.2.2),

\[
(z-z_0)^{\frac{1}{2}} = \sum_{j=0}^{\infty} \frac{(l-p)^{\frac{1}{2}-j,p} (l-q)^{i-j}}{(l-p)^{\frac{1}{2}-j,p} (l-q)^{j-q} (l-p)^{j}} (x-x_0)^{\frac{1}{2}-j,p},
\]

where \((x-x_0)^{\frac{1}{2}-j,p} = \frac{1}{x-j} \frac{(l-x_0)^{\infty,p}}{(l-p)^{\frac{1}{2}-j,p} (l-p)^{\infty,p}}\)

and \(\frac{1}{x} = \frac{1}{l-p^{\frac{1}{2}-j,p}} = (l-p^{\frac{1}{2}-j,p})^{-1}\).

Hence,

\[
(z-z_0)^{\frac{1}{2}} = x^2(1-\frac{x_0}{x})^{\infty,p} \sum_{j=0}^{\infty} \frac{3-j}{3-1} (l-p^{\frac{1}{2}-j,p} (l-q)^{j-j} (y-y_0)^{j,q}}{(l-q)^{j,q}(l-p)^{j} (l-p^{\frac{1}{2}-j,p} \frac{x_0}{x})^{\infty,p}}.
\]

which converges for all \(z \in \mathbb{Q}'\) such that \(y < |x_0|\).

(b) \((z-p x_0)^{-1}\)

With respect to the operator \(\ast\) this function is the
inverse of \((z-x_o)\) since

\[(z-x_o) * (z-p x_o)^{(-1)} = C_y \left[\left(z-x_o \right) \left(x-p x_o \right)_{-1} \right] \]

Now \((x-p x_o)_{-1} = \frac{1}{(1 - \frac{x}{x_o})} \)

\[= \frac{1}{(x-x_o)} \]

Hence,

\[(z-x_o) * (z-p x_o)^{(-1)} = C_y \left[1 \right] \]

\[= 1. \]

A discrete power series can be derived for \((z-p x_o)^{(-1)}\) which is analogous to the power series for \((z-x_o)^{-1}\) given by

\[(z-x_o)^{-1} = -\sum_{j=0}^{\infty} \frac{z^j}{x_{j+1}} \]

Now,
\[(z-p \, x_o)^{-1} = C_y \left[\frac{1}{(x-x_o)}\right]; \, y < |x_o|\]

\[= C_y \left[\frac{1}{(x-x_o)}\right]\]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left(\frac{iy}{p,x}\right)^j \left[\frac{1}{(x-x_o)}\right]\]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_{j,q}} \left(\frac{iy}{p,x}\right)^j \left[\frac{(1-p)^{j,p}}{(1-p)_{j,p}}\right] \left(\frac{x}{x_o-x}\right)_{j+1,p}\]

Or \[(z-p \, x_o)^{-1} = -\sum_{j=0}^{\infty} \frac{(1-p)^{j,p}(1-q)^j}{(1-p)_{j,p}(1-q)_{j,q}} \left(\frac{iy}{x_o-x}\right)_{j+1,p}\]

From Hahn [50],

\[\frac{1}{(1+x)^{\alpha}} = \sum_{j=0}^{\infty} (-1)^j \frac{a^j}{(1-q)_{j,q}} ; \, x , |x| < 1 \quad \quad \quad \quad (6.2.6)\]

It follows then that for \(x < |x_o|\)

\[\frac{1}{(z-p \, x_o)^{-1} = -\sum_{j=0}^{\infty} \frac{(1-p)^{j,p}(1-q)^j}{(1-p)_{j,p}(1-q)_{j,q}} \left(\frac{iy}{x_o-x}\right)_{j+1,p} \left(\frac{1-p}{x} \right)_{j+1-k}}\]
Hence if $y < |x_o|, x < |x_o|$, i.e. $||z|| < |x_o|$, it follows that

$$(z-p \ x_o) \ (-1) = \sum_{j=0}^{\infty} \frac{z}{j+1} \ x_o \ (-1) \ j \ (6.2.7)$$

Using similar methods to (b) above, it can be shown that for $||z|| < |p \ x_o|$,

$$(z-x_o) \ (-n) = \sum_{j=0}^{\infty} \frac{(-1)^{n-j} \ \frac{1}{2} \ [j(j+1)+n(n+1)]+nj}{(1-p)_{n-j} \ p^j \ (1-q)_j \ q \ (1-p)_{n-j}} \ (-x_o)^{j+1} \ x_o \ z\ j \ (6.2.8)$$

where n is a positive integer.
§3. DISCRETE MACLAURIN SERIES—To include the point \((C, C)\), extend the definition of \(\bar{R}\) (from (4.2.4)) as follows;

\[\bar{R}_0 = \bar{R} \cup (0,0) \quad \cdots \quad (6.3.1) \]

A discrete function \(f\) is said to be \((p,q)\)-analytic on \(\bar{R}_0\) if it is \((p,q)\)-analytic on \(\bar{R}\) and in addition,

\[\lim_{(x,y) \to (0,0)} \sum_j^n [f(x,y)] \]

exists. The limit is denoted by \(\sum_j^n f(0,0)\). \(\cdots \quad (6.3.2)\)

Under certain conditions the discrete Maclaurin series can be shown to represent a \((p,q)\)-analytic function, provided the series converges. For example the following theorem holds:

THEOREM 6.3.1. Let \(f\) be \((p,q)\)-analytic in \(\bar{R}_0\). If \(f(z) = C_y [f(x,0)] = C_x [f(0,y)]\), the series representations of \(C_y, C_x\) being uniformly and absolutely convergent in \(\bar{R}\), then

\[
\frac{1}{(1-q)^j} \sum_{j=0}^\infty \frac{(1-q)^j}{j!} [f(0,0)] [f(0,0)] z^j,
\]
the series being absolutely convergent for all $z \in \mathbb{R}_0$.

Proof:

$$f(z) = \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} \sum_{q=0}^{j} \left[f(0,y) \right].$$

Hence,

$$f(x,C) = \lim_{y \to 0} \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} \sum_{q=0}^{j} \left[f(0,y) \right].$$

and by uniform convergence,

$$f(x,0) = \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} \sum_{q=0}^{j} \lim_{y \to 0} \left[f(0,y) \right].$$

By (6.3.2),

$$f(x,0) = \sum_{j=0}^{\infty} \frac{(1-p)^j}{(1-p)_{j,p}} \sum_{q=0}^{j} \left[f(0,0) \right].$$

Now $f(z)$ is also given by
\[f(z) = C_y \left[f(x,0) \right] \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)^{j,q}} (iy)^{j,q} \left[f(x,0) \right] \]

and so by the above,

\[f(z) = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)^{j,q}} (iy)^{j,q} \sum_{k=0}^{\infty} \frac{(1-p)^k}{(1-p)^{k,p}} x \]

\[\sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)^{j,q}} (iy)^{j,q} \sum_{k=0}^{\infty} \frac{(1-p)^k}{(1-p)^{k,p}} x \]

By absolute convergence the summation can be rearranged to give,

\[f(z) = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)^{j,q}} (iy)^{j,q} \sum_{k=0}^{\infty} \frac{(1-p)^k}{(1-p)^{k,p}} x \]

\[= \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)^{j,q}} (iy)^{j,q} \left[f(0,0) \right] z^{j} \]

This proves the theorem.
Theorem 6.1.2 provides as a direct consequence a condition for convergence of the discrete Maclaurin series as follows:

THEOREM 6.3.2. If \(\lim \sup \left\{ \left| \sum_{j=0}^{\frac{1}{\frac{1}{f(0,0)}}} j^j \right| \right\} = a \), then the series

\[
\sum_{j=0}^{\infty} \frac{(1-q)^j}{j!} \frac{q}{(1-q)^{j,q}} [f(0,0)] \frac{j}{z} \]

converges absolutely for all \(z \) such that

\[
\| (1-p)x + (1-q)i\gamma \| < \frac{1}{a} .
\]