LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Role of ROS in multistage carcinogenesis</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Ultraviolet absorption spectra of native and modified human DNA.</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>Circular dichroism spectra of native and ROS-human DNA.</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Thermal melting profile of native and ROS-human DNA</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>Hydroxyapatite column chromatography of (a) native human DNA, (b) heat denatured human DNA and (c) ROS-human DNA.</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Nuclease S1 sensitivity of native and ROS-human DNA</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Agarose gel electrophoresis of native and modified human DNA</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>Alkaline sucrose density gradient ultracentrifugation of native and ROS-human DNA.</td>
<td>59</td>
</tr>
<tr>
<td>9</td>
<td>Elution profile of standard individual DNA bases on DEAE Sephadex A-25 column.</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>Elution profile of acid hydrolyzed native human DNA on DEAE Sephadex A-25 column.</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>Elution profile of acid hydrolyzed ROS-human DNA on DEAE Sephadex A-25 column.</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Direct binding ELISA of anti-ROS-human DNA immune and preimmune sera.</td>
<td>66</td>
</tr>
<tr>
<td>13</td>
<td>Direct binding ELISA of various immune and</td>
<td>67</td>
</tr>
</tbody>
</table>
preimmune sera with their respective immunogens.

Fig.14. Inhibition of anti-ROS-human DNA immune and preimmune sera with ROS-human DNA.

Fig.15. Elution profile of anti-ROS-human DNA-IgG on Protein A-Sepharose CL-4B column.

Fig.16. Direct binding ELISA of anti-ROS-human DNA immune and preimmune IgG with ROS-human DNA.

Fig.17. Inhibition of anti-ROS-human DNA-IgG binding to ROS-human DNA by various nucleic acids.

Fig.18. Inhibition of anti-ROS-human DNA-IgG binding to ROS-human DNA by various nucleic acids.

Fig.19. Inhibition of anti-ROS-human DNA-IgG binding to ROS-human DNA by various synthetic polynucleotides.

Fig.20. Inhibition of anti-ROS-human DNA-IgG binding to ROS-human DNA by various macromolecules.

Fig.21. Band shift assay of anti-ROS-human DNA-IgG binding to (a) native human DNA and (b) ROS-human DNA.

Fig.22. Immunofluorescence study on kidney sections of rabbits immunized with native and ROS-human DNA.

Fig.23. Light microscopy of kidney sections of rabbit immunized with native human DNA.

Fig.24. Light microscopy of kidney sections of rabbit immunized with native human DNA.

Fig.25. Light microscopy of kidney sections of rabbits immunized with native human DNA.

Fig.26. Light microscopy of kidney sections of rabbits
immunized with ROS-human DNA.

Fig.27. Light microscopy of kidney sections of rabbits immunized with ROS-human DNA.

Fig.28. Light microscopy of kidney sections of rabbits immunized with ROS-human DNA.

Fig.29. Direct binding ELISA of SLE sera to native calf thymus DNA, native human DNA and ROS-human DNA.

Fig.30. Inhibition of SLE anti-DNA autoantibody binding to native human DNA by native and ROS-human DNA.

Fig.31. Inhibition of SLE anti-DNA autoantibody binding to native human DNA by native and ROS-human DNA.

Fig.32. Inhibition of SLE anti-DNA autoantibody binding to native human DNA by native and ROS-human DNA.

Fig.33. Elution profile of SLE IgG on Protein A-Sepharose CL-4B column.

Fig.34. Band shift assay of SLE IgG binding to (a) native human DNA and (b) ROS-human DNA.

Fig.35. Binding of various cancer sera to native and ROS-human DNA.

Fig.36. Detection of antibodies against native and ROS-human DNA in sera of patients with cancer of larynx.

Fig.37. Detection of antibodies against native and ROS-human DNA in sera of patients with breast cancer.

Fig.38. Detection of antibodies against native and ROS-human DNA in sera of patients with cancer of oral cavity.

Fig.39. Detection of antibodies against native and ROS-
human DNA in sera of patients with lung cancer.

Fig. 40. Detection of antibodies against native and ROS-human DNA is sera of patients with liver cancer.

Fig. 41. Detection of antibodies against native and ROS-human DNA in sera of patients with cancer of gastrointestinal tract.

Fig. 42. Detection of antibodies against native and ROS-human DNA in sera of patients with cancer of cervix, penis, bladder, bone and Non-Hodgkin's lymphoma.

Fig. 43. Binding of cancer sera collected before and after radiotherapy, to native and ROS-human DNA.

Fig. 44. Elution profile of cancer IgG on Protein A-Sepharose CL-4B column.

Fig. 45. Band shift assay of cancer IgG binding to native and ROS-human DNA.

Fig. 46. Inhibition of binding of anti-ROS-human DNA-IgG by DNA from lymphocytes of breast cancer patients.

Fig. 47. Inhibition of binding of anti-ROS-human DNA-IgG by DNA from lymphocytes of patients with cancer of head and neck.

Fig. 48. Inhibition of binding of anti-ROS-human DNA-IgG by DNA from lymphocytes of patients with cancer of gall bladder.

Fig. 49. Inhibition of binding of anti-ROS-human DNA-IgG by lymphocytes of patients with cancer of cervix.

Fig. 50. Inhibition of binding of anti-ROS-human DNA-IgG by lymphocytes of normal healthy individuals.