CONTENTS

ACKNOWLEDGEMENTS i-ii
ABBREVIATIONS iii-iv

CHAPTER 1: INTRODUCTION 1-15

1.1. In vitro propagation techniques 6

1.2. Mucuna pruriens (L.) DC. 7
 1.2.1. Habitat 8
 1.2.2. Botanical description 8
 1.2.3. Chemical constituents 8
 1.2.4. Importance 8
 1.2.4.1. Medicinal 8
 1.2.4.2. Others 9
 1.2.5. Constraints in conventional propagation 9

1.3. Ocimum basilicum L. 10
 1.3.1. Habitat 10
 1.3.2. Botanical description 11
 1.3.3. Chemical constituents 11
 1.3.4. Importance 11
 1.3.4.1. Medicinal 11
 1.3.4.2. Economic 11
 1.3.4.3. Others 12
 1.3.5. Constraints in conventional propagation 12

1.4. Objectives 15

CHAPTER 2: REVIEW OF LITERATURE 16-40

2.1. Historical background 16
2.2. Micropropagation 18

2.2.1. Direct plant regeneration 19
 2.2.1.1. Explant type 19
 2.2.1.2. Media type 21
 2.2.1.3. pH 22
 2.2.1.4. Plant growth regulators 23
 2.2.1.5. Sub-culturing 31
2.2.2. Root formation 32
2.2.3. Hardening, acclimatization and field establishment 34
2.3. Synthetic seed 36
2.4. Physiological studies 37
2.5. Biochemical studies 39

CHAPTER 3: MATERIALS AND METHODS 41-57
3.1. Source of plant material 41
3.2. Surface sterilization 41
3.3. Establishment of aseptic seedlings and preparation of explants 41
3.4. Culture media 42
3.4.1. Composition of basal media 42
3.4.2. Preparation of stock solutions 42
3.4.3. Plant growth regulators and carbon source 45
3.4.4. Adjustment of pH, gelling of medium and sterilization 45
3.5. Sterilization of glasswares and instruments 45
3.6. Sterilization of laminar airflow cabinet 46
3.7. Inoculation and incubation 46
3.8. Rooting 46
3.9. Hardening and acclimatization of plantlets 47
3.10. Synthetic seed 47
3.10.1. Explant source 47
3.10.2. Encapsulation matrix 47
3.10.3. Encapsulation 47
3.10.4. Planting media and culture conditions 48
3.10.5. Low temperature storage 48
3.11. Physiological and biochemical studies of in vitro regenerated plantlets during acclimatization 48
3.11.1. Leaf gas exchange measurement 49
3.11.2. Chlorophyll and carotenoid measurement 49
3.11.2.1. Extraction 49
3.11.2.2. Estimation 49
3.11.2.3. Calculation 49

3.11.3. Superoxide dismutase (SOD) 50
3.11.3.1. Procedure 50
3.11.3.2. Enzyme assay 50
3.11.3.3. Preparation of reagents 51

3.11.4. Catalase (CAT) 52
3.11.4.1. Procedure 53
3.11.4.2. Enzyme assay 53
3.11.4.3. Preparation of reagents 53

3.11.5. Soluble protein 54
3.11.5.1. Procedure 54
3.11.5.1.1. Extraction 54
3.11.5.1.2. Estimation 55
3.11.5.1.3. Preparation of reagents 55

3.12. Anatomical studies 56
3.12.1. Fixation and storage of plant material 56
3.12.2. Embedding, sectioning and staining 56

3.13. Chemicals and glasswares 56

3.14. Statistical analysis 57

CHAPTER 4: RESULTS (With 25 Tables and 37 Figures) 58-100

4.1. Mucuna pruriens L. (DC.) 58

4.1.1. Establishment of aseptic seedlings 58
4.1.2. Direct shoot regeneration 58

4.1.2.1. Cotyledonary node (CN) explants 58
4.1.2.1.1. Effect of cytokinins 58
4.1.2.1.2. Effect of combinations of auxin and cytokinin 59
4.1.2.1.3. Effect of TDZ 61
4.1.2.1.4. Effect of different media and strength 65
4.1.2.1.5. Effect of medium pH 65

4.1.2.2. Nodal segment 65
4.1.2.2.1. Effect of cytokinins 65
4.1.2.2.2. Effect of auxin and cytokinin combinations 66
4.1.2.2.3. Effect of TDZ
4.1.2.2.4. Effect of TDZ dosage and duration in liquid MS medium
4.1.2.2.5. Effect of different media and strength
4.1.2.2.6. Effect of medium pH
4.1.3. Rooting
4.1.3.1. In vitro rooting
4.1.3.2. Ex vitro rooting
4.1.4. Acclimatization
4.1.5. Physiological and biochemical studies
4.1.5.1. Changes in photosynthetic parameters
4.1.5.2. Changes in enzymatic activities
4.2. Ocimum basilicum L.
4.2.1. Direct shoot regeneration
4.2.1.1. Nodal segment explants
4.2.1.1.1. Effect of cytokinins
4.2.1.1.2. Effect of cytokinin-auxin combinations
4.2.1.1.3. Effect of subculturing in hormone free MS medium
4.2.1.1.4. Effect of TDZ dosage and duration in liquid MS medium
4.2.1.1.5. Effect of different media and strength
4.2.1.1.6. Effect of medium pH
4.2.1.2. Shoot tip explants
4.2.1.2.1. Effect of cytokinins
4.2.1.2.2. Combined effect of cytokinin and auxin
4.2.1.2.3. Effect of subculture passage in hormone free MS medium
4.2.1.2.4. Effect of shoot tip explants precultured in TDZ
4.2.1.2.5. Effect of different media strength and pH
4.2.2. Rooting
4.2.2.1. In vitro rooting
4.2.2.2. Ex vitro rooting
4.2.3. Acclimatization
4.2.4. Synthetic seed
4.2.4.1. Effect of encapsulation matrix
4.2.4.2. Plantlet development from alginate encapsulated nodal segment 96
4.2.4.3. Effect of different storage duration on conversion of encapsulated nodal segment 98
4.2.4.4. Transfer of plantlets to pots 98
4.2.5. Physiological and biochemical studies 100
4.2.5.1. Changes in photosynthetic parameters 100
4.2.5.2. Changes in enzymatic activities 100

CHAPTER 5: DISCUSSION 101-114
5.1. Seed germination 102
5.2. Direct plant regeneration 102
5.3. Rooting 107
5.4. Acclimatization 109
5.5. Synthetic seed 110
5.6. Physiological and biochemical studies 112

CHAPTER 6: SUMMARY AND CONCLUSIONS 115-121
6.1. Mucuna pruriens L. (DC.) 115
6.2. Ocimum basilicum L. 118

REFERENCES 122-158