## CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.1. General account</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2. Economic importance</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3. Botanical description</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4. Induced mutations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.5. Objectives</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>REVIEW OF LITERATURE</td>
<td>7-29</td>
</tr>
<tr>
<td></td>
<td>2.1. Origin, taxonomic classification and chromosome number</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2. Mutagenesis'</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2.1. Mutagen dose and genotypic sensitivity</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.2.2. Biological damage</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.2.3. Mutagenic effectiveness and efficiency</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.2.4. Chlorophyll mutations</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.3. Morphological mutations</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.4. Quantitative traits</td>
<td>23</td>
</tr>
<tr>
<td>3.</td>
<td>MATERIALS AND METHODS</td>
<td>30-45</td>
</tr>
<tr>
<td></td>
<td>3.1. Materials</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3.1.1. Varieties used</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3.1.2. Mutagens used</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3.1.2.1. Ethylmethane sulphonate (EMS)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3.1.2.2. Hydrazine hydrate (HZ)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3.1.2.3. Sodium azide (SA)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3.2. Experimental procedures</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3.2.1. Preparation of mutagenic solutions</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3.2.2. Pre-soaking of seeds</td>
<td>31</td>
</tr>
</tbody>
</table>
3.2.3. Mutagenic treatments
3.2.4. Sample size
3.2.5. Treatment time
3.2.6. Controls
3.3. Handling and selection of the treated material in different generations
  3.3.1. M₁ generation
  3.3.2. Studies in M₁ generation
    3.3.2.1. Seed germination
    3.3.2.2. Seedling height
    3.3.2.3. Pollen fertility
    3.3.2.4. Plant survival
    3.3.2.5. Morphological abnormalities
  3.4. M₂ generation
    3.4.1. Studies in M₂ generation
      3.4.1.1. Chlorophyll mutations
      3.4.1.2. Mutagenic effectiveness and efficiency
      3.4.1.3. Quantitative traits
  3.5. M₃ generation
    3.5.1. Seed protein estimation
    3.5.2. Insoluble protein estimation
    3.5.3. Soluble protein estimation
    3.5.4. Standard for protein
    3.5.5. Total seed protein estimation
  3.6. Statistical analysis
    3.6.1. Mean (X)
    3.6.2. Standard error (S.E.)
    3.6.3. Components of variance
      3.6.3.1. Genotypic variance (σ²g)
3.6.3.2. Genotypic coefficient of variation (GCV) 40
3.6.3.3. Phenotypic variance ($\sigma^2_p$) 40
3.6.3.4. Phenotypic coefficient of variation (PCV) 41
3.6.3.5. Heritability ($h^2$) 41
3.6.3.6. Genetic advance (GA) 41
3.6.4. Test of significance 41
3.6.5. Correlation coefficient ($r$) 44

4. EXPERIMENTAL RESULTS 46-70
4.1. Studies in $M_1$ generation 46
4.1.1. Biological damage 46
4.1.1.1. Seed germination 46
4.1.1.2. Seedling height 47
4.1.1.3. Pollen fertility 47
4.1.1.4. Plant survival 48
4.1.2. Morphological abnormalities 48
4.1.2.1. Cotyledonary leaves 48
4.1.2.2. Leaf morphology 49
4.1.3. Quantitative traits 50
4.2. Studies in $M_2$ generation 50
4.2.1. Seed germination 50
4.2.2. Pollen fertility 51
4.2.3. Frequency and spectrum of chlorophyll mutations 51
4.2.4. Mutagenic effectiveness and efficiency 53
4.2.5. Morphological mutations 54
4.2.6. Quantitative traits 57
4.3. Studies in $M_3$ generation 64
4.3.1. Quantitative traits 65
4.4. Isolation of high yielding mutants 68
4.4.1. Correlation studies 69
4.4.2. Seed protein content 70

5. **DISCUSSION** 71-96

5.1. Biological damage 72

5.2. Chlorophyll mutations 77

5.3. Mutagenic effectiveness and efficiency 80

5.4. Morphological mutations 81

5.5. Quantitative traits 84

5.6. High yielding mutants 94

5.7. Seed protein content of the mutants 95

6. **SUMMARY** 97-100

**LITERATURE CITED** 101-138