Contents
CONTENTS

ACKNOWLEDGEMENTS

ABBREVIATIONS

LIST OF FIGURES AND TABLES

CHAPTER 1 : PREFACE

1.1 Introduction 1
1.2 Objectives 5
1.3 Scope of Thesis 6
1.4 References 7

CHAPTER 2 : PCR BASED DETERMINATION AND ANALYSIS OF GENETIC VARIABILITY IN TREES.

2.1 General survey on neem 10
 2.1.1 Botanical characteristics of neem 11
 2.1.2 Distribution 12
 2.1.3 Cytogenetics 13
 2.1.4 Usefulness of neem 14
 2.1.5 Research work on neem in India 16
 2.1.6 Why neem was selected for the present study? 17
 2.2 Molecular approaches in the assessment of genetic variability 18
 2.2.1 Rationale behind use of molecular approaches 21
 2.2.2 Nature of DNA polymorphism 22
 2.2.3 Molecular techniques used for analysis of genetic variability 24
 2.3 Random Amplified Polymorphic DNA (RAPD) 28
 2.4 Application of RAPDs in genetic analysis of trees 32
CHAPTER 3: STANDARDIZATION OF DNA ISOLATION AND RAPD-PCR CONDITIONS

3.1 Introduction 66
3.2 Materials and Methods 67
 3.2.1 Plant material 67
 3.2.2 Chemicals 67
 3.2.3 Methods for DNA isolation 68
 3.2.4 DNA purification 72
 3.2.5 Determination of quality and quantity of isolated DNA 73
 3.2.6 Optimization of RAPD-PCR reaction 74
3.3 Results 78
 3.3.1 Quality and quantity of isolated DNAs 78
 3.3.2 Optimization of RAPD PCR conditions 80
3.4 Discussion 83
 3.4.1 DNA isolation 84
 3.4.2 Optimization of RAPD-PCR conditions 90
3.5 References 96

CHAPTER 4: ANALYSIS OF GENETIC DIVERSITY IN NEEM USING RAPD TECHNIQUE

4.1 Introduction 99
4.2 Materials and methods 100
 4.2.1 Plant material 100
 4.2.2 DNA isolation 104
 4.2.3 Amplification reaction using random primers 104
 4.2.4 Primer screening 105
 4.2.5 RAPD profile resolution 106
 4.2.6 Data analysis 107
4.3 Results
4.3.1 RAPD profiles for "Lucknow" population 108
4.3.2 RAPD profiles for "Jodhpur" population 108

4.4 Discussion
4.4.1 Primer screening 111
4.4.2 Analysis of "Lucknow" population 113
4.4.3 Analysis of "Jodhpur" population 114

4.5 References 116

CHAPTER 5 : PCR BASED DFP USING MICRO- AND MINI-SATELLITE SEQUENCES

5.1 Introduction 119
5.2 Materials and Methods
5.2.1 Plant material 121
5.2.2 Microsatellite and minisatellite primers 123
5.2.3 DNA isolation 124
5.2.4 Microsatellite primed PCR (MP-PCR) 125
5.2.4.1 Optimization of MP-PCR conditions 125
5.2.4.2 Pre-digestion of template DNA for MP-PCR 127
5.2.5 Direct Amplification of Minisatellite DNA (DAMD-PCR)
5.2.5.1 DAMD-PCR components 127
5.2.5.2 DAMD-PCR conditions 128

5.3 Results 128
5.3.1 MP-PCR analysis 128
5.3.1.1 Optimization of MP-PCR conditions 129
5.3.1.2 MP-PCR profiles 131
5.3.1.3 Restriction endonuclease digestion and PCR amplification 132
5.3.2 DAMD profiles 132

5.4 Discussion 133
5.4.1 MP-PCR analysis 133
5.4.2 DAMD-PCR analysis 136

5.5 References 139
CHAPTER 6 : INTER- AND INTRA-GEOGRAPHICAL GROUP RELATIONSHIP AMONGST NEEM PROVENANCES

6.1 Introduction 144
6.2 Materials and Methods 145
 6.2.1 Plant material 145
 6.2.2 DNA isolation 146
 6.2.3 RAPD reaction 146
 6.2.4 Primers used 147
 6.2.5 Agarose gel electrophoresis 147
 6.2.6 Polyacrylamide gel electrophoresis 147
 6.2.7 Ethidium bromide staining of agarose gel 148
 6.2.8 Silver staining of polyacrylamide gel 148
 6.2.9 Data analysis 149
6.3 Results 150
 6.3.1 RAPD products resolved on agarose gel after staining with Ethidium Bromide 150
 6.3.2 RAPD products resolved on PAGE after silver staining 150
6.4 Discussion 152
 6.4.1 Optimization of silver staining technique 152
 6.4.2 RAPD analysis 155
6.5 References 158

CHAPTER 7 : GENERAL DISCUSSION

7.1 Introduction 161
7.2 Conclusion from present study 163
7.3 Future prospects 167
7.4 References 169

SUMMARY I-XI
ANNEXURE 1
ANNEXURE 2