5.0 SUMMARY

Buffalo plasma α_2M was purified to an apparent homogeneity by ammonium sulphate fractionation and gel filtration chromatography. The protein was purified 35-fold with an yield of about 61%. The molecular weight determined by gel filtration and SDS-PAGE was 660 KDa. SDS-PAGE in presence of thiol reductant dissociated the protein into quarter subunits with a molecular weight of 165 KDa. The stokes radius of buffalo α_2M calculated from gel filtration data was 850 Å.

The purified buffalo α_2M migrated as a single band on polyacrylamide gel electrophoresis and showed an increased mobility after reaction with trypsin. Methylamine caused only a small change in electrophoretic mobility. Trypsinization of the methylamine treated preparation completed the transformation to the fast form.

Studies of methylamine revealed that buffalo α_2M has thiol esters of unequal reactivity. Two of the four thiol esters appeared recalcitrant to methylamine treatment. The carbohydrate composition of the purified protein was 7.8% dry weight of the molecule. The amino acid composition of buffalo α_2M appeared typical of α_2Ms except for the deficient in proline and aspartic acid and higher content of alanine. Buffalo α_2M exhibited good immunological cross reactivity against human and goat α_2M.

Sodium thiocyanate at 1.2M or higher concentration dissociated the native buffalo α_2M into half molecules consisting of two disulphide bonded subunits. Methylamine treatment rendered the molecule more resistant to dissociation than native α_2M. The observed fluorescence change indicates that conformational alteration occurs gradually on exposure to sodium thiocyanate.
The physiological zinc concentration of buffalo plasma was about 18-20 \(\mu \text{M} \). \(\alpha_2 \text{M} \) pre-treated with up to 30\(\mu \text{M} \) zinc retained most properties of native \(\alpha_2 \text{M} \), while \(\alpha_2 \text{M} \) treated with 200\(\mu \text{M} \) zinc exhibited an irreversible loss in activity, although it displayed the characteristic proteolysis and methylamine induced alterations in electrophoretic mobility.

Trypsin treatment resulted in a significant decrease in intrinsic fluorescence of buffalo \(\alpha_2 \text{M} \) whereas methylamine caused only marginal alterations. The magnitude of conformational changes occurring on methylamine and trypsin treatment were markedly higher in case of the \(\alpha_2 \text{M} \) pretreated with 200 \(\mu \text{M} \) zinc. The changes in the CD spectrum of buffalo \(\alpha_2 \text{M} \) were also very small on methylamine treatment whereas loss in ellipticity was remarkable on treatment with Sepharose-linked trypsin. Treatment of buffalo \(\alpha_2 \text{M} \) with 200 \(\mu \text{M} \) zinc resulted in significant alteration in the CD spectrum also after treatment with methylamine or trypsin. Prolonged incubation with high concentration of the metal ion caused the dissociation of \(\alpha_2 \text{M} \) into half molecules.