LIST OF TABLES

Table 1.1. Chemistry, manufacturing and control testing conducted in the drug development pathway. 05

Table 1.2. Components of stability testing protocol. 08

Table 1.3. ICH guidelines for identification and qualification of impurities in bulk drug and formulations 14

Table 1.4. Proportion of various analytical methods prescribed for the assay of bulk drug materials in Ph. Eur. 4 [17] and USPXXVII [18]. 18

Table 1.5. Comparison of HPLC, CE and TLC. 25

Table 1.6. SIA systems for the active ingredient determination. 29

Table 1.7. Voltammetric analysis of drugs. 32

Table 1.8. Quantitative analysis of drugs in pharmaceutical formulations by VU-visible spectrophotometric procedures. 34

Table 1.9. Analysis of compounds in pharmaceutical formulations. 39

Table 1.10. Validation characteristics normally evaluated for the different types of test procedure and the minimum number of determinations required (if applicable). 48

Table 1.11. Requirements for different calibration modes with relevant parameters. 50

Table 1.12. Approaches for determining the detection and quantitation [242]. 56

Table 2.1. Summary of data of the initial rate of reaction at different concentration of metaprolol tartrate and KMnO4. 109
Table 2.2. Summary of optical characteristics and statistical data for the fixed-time method.

Table 2.3. Test of precision of the proposed methods by intra-day and inter-day assays.

Table 2.4. Summary of data for the determination of metoprolol tartrate in pharmaceutical preparations by standard addition method.

Table 2.5. Comparison of the proposed methods using point and Interval hypothesis tests with the reference method at 95% confidence level.

Table 3.1. Optical performance and regression characteristics of the proposed method.

Table 3.2. Intra day and Inter day assays: Test of accuracy and precision of the proposed method in pure form.

Table 3.3. Intra day and Inter day assays: Test of accuracy and precision of the proposed method in pharmaceutical formulations.

Table 3.4. Standard addition method: Evaluation of the validity of the proposed method for the recovery of labetalol hydrochloride.

Table 3.5. Point and interval hypothesis tests: Evaluation of the applicability of the proposed method at 95% confidence level.

Table 3.6. Comparison of the proposed method with existing spectrophotometric methods for the determination of labetalol hydrochloride in drug formulations.

Table 4.1. Calibration equations at different fixed times.

Table 4.2. Optical and regression characteristics of the fixed time and equilibrium methods.
Table 4.3. Evaluation of accuracy and precision of the proposed methods 172

Table 4.4. Standard addition method for the determination of ramipril 173
 in tablets and capsule

Table 4.5. Comparison of the proposed methods with the reference method 175

Table 5.1. Optical characteristics and statistical data of the regression equations 198

Table 5.2. Evaluation of the accuracy and precision of the two proposed methods 200

Table 5.3. Determination of perindopril in pharmaceutical preparations 201
 by standard addition technique

Table 5.4. Determination of perindopril in pharmaceutical preparations 202
 by the proposed methods and reference method [12]