CONTENTS

ACKNOWLEDGEMENTS

ABBREVIATIONS

CHAPTER 1 INTRODUCTION

1.1 *Vitex negundo*
1.1.1 Description
1.1.2 Location
1.1.3 Propagation
1.1.4 Medicinal Uses
1.1.5 Other Uses

1.2 *Ruta graveolens*
1.2.1 Description
1.2.2 Location
1.2.3 Propagation
1.2.4 Medicinal Uses
1.2.5 Other Uses

1.3 Objectives

CHAPTER 2 REVIEW OF LITERATURE

2.1 Direct plant regeneration
2.1.1 Effect of thidiazuron
2.2 Callus induction and plant regeneration
2.3 Rooting
2.4 Synthetic seeds
2.5 Acclimatization
2.6 Genetic stability

CHAPTER 3 MATERIALS AND METHODS

3.1 Plant material and explant source
3.2 Culture media
3.3 Preparation of culture medium
3.3.1 Preparation of stock solution
3.3.2 Growth regulators and carbon source
3.3.3 pH adjustment and gelling of the medium
3.4 Sterilization
3.4.1 Sterilization of medium
3.4.2 Sterilization of glasswares and instruments
3.4.3 Sterilization of laminar airflow hood
3.4.4 Sterilization of explants
3.5 Inoculation and incubation 42
3.6 Rooting 43
3.7 Synthetic seed production 43
3.7.1 Plant material and export source 43
3.7.2 Encapsulation matrix 43
3.7.3 Encapsulation planting media and culture conditions 44
3.7.4 Low temperature storage 44
3.8 Harding and Acclimatization 44
3.9 Evaluation of genetic stability 45
3.9.1 DNA extraction and PCR amplification condition 45
3.10 Physiological and biochemical studies 47
3.10.1 Leaf gas exchange measurements 47
3.10.2 Chlorophyll and carotenoids estimation 47
3.10.2.1 Procedure 47
3.10.2.2 Estimation 47
3.10.3 Estimation of carbonic and anhydride (CA) activity 48
3.10.3.1 Procedure 48
3.10.3.2 Enzyme assay 49
3.10.3.3 Preparation of reagents 49
3.11 Histology 50
3.11.1 Fixation and storage 50
3.11.2 Embedding and sectioning 50
3.11.3 Staining 51
3.12 Chemicals used 51
3.13 Statistical analysis 51

CHAPTER 4 RESULTS 52-99

4.1 Vitex negundo 52
4.1.1 Direct shoot regeneration in nodal explant 52
4.1.1.1 Effect of cytokinins 52
4.1.1.2 Effect of auxins and cytokinins 54
4.1.1.3 Effect of thidiazuron 56
4.1.1.4 Effect of pH 58
4.1.1.5 Effect of various media 59
4.1.2 Direct shoot regeneration in shoot tip explant 59
4.1.2.1 Effect of cytokinin 59
4.1.2.2 Effect of auxin and cytokinin 61
4.1.2.3 Effect of Thidiazuron 64
4.1.3 Rooting of regenerated shootlets 65
4.1.3.1 In vitro rooting 65
4.1.3.2 Ex vitro rooting 66
4.1.4 Acclimatization 69
4.1.5 Synthetic seeds 69
4.1.5.1 Effect of Na₂-alginate concentration on bead formation 69
4.1.5.2 Effect of CaCl₂ concentration on bead formation 69
4.1.5.3 Regeneration from alginate encapsulated nodal segments 71
4.1.5.4 Low temperature storage 71
4.1.5.5 Establishment of plants in soil 75
4.1.6 Physiological investigations 75
4.1.6.1 Total chlorophyll and carotenoids content 75
4.1.6.2 Net photosynthetic rate (P_{N}) 75
4.1.6.3 Carbonic anhydrase (CA) activity 75
4.1.7 Evaluation of genetic homogeneity 76

4.2 \textit{Ruta graveolens} 77
4.2.1 Direct shoot regeneration in nodal explants 77
4.2.1.1 Effect of cytokinins 77
4.2.1.2 Effect of auxins and cytokinin 79
4.2.1.3 Effect of pH 79
4.2.1.4 Effect of various media 81
4.2.2 Direct shoot regeneration in shoot tip explant 81
4.2.2.1 Effect of cytokinins 81
4.2.2.2 Effect of auxins and cytokinins 83
4.2.3 Indirect organogenesis 83
4.2.3.1 Callus induction from different explants 83
4.2.3.2 Shoot differentiation from leaf callus 87
4.2.3.3 Shoot differential from nodal callus 89
4.2.3.4 Shoot differentiation from inter-nodal callus 92
4.2.4 In vitro rooting and acclimatization 95
4.2.5 Synthetic seeds 98

CHAPTER 5 DISCUSSION 100-118

5.1 Direct shoot regeneration 101
5.2 Indirect shoot organogenesis 107
5.3 Rooting in regenerated shoots 110
5.4 Synthetic seed production 113
5.5 Acclimatization 115
5.6 Physiological study 116
5.7 Genetic fidelity 117

CHAPTER 6 SUMMARY AND CONCLUSIONS 119-124

6.1 \textit{Vitex negundo} 120
6.2 \textit{Ruta graveolens} 121

REFERENCES 125-147