CONTENTS

Chapters | page no.
---|---

1. INTRODUCTION | 1-6

1.1 Taxonomic position of mango | 1
1.2 Major areas of distribution | 1
1.3 Nutritional and commercial value | 2
1.4 World production and place of India | 2
1.5 Important edible and rootstock varieties | 3
1.6 Conventional methods of propagation, their drawbacks and importance of rootstocks | 3
1.7 In vitro nucellar embryogenesis, its importance for clonal propagation applicable in mango | 4
1.8 Scope of biotechnological research, in vitro approaches for improvement of quality plant production | 5
1.9 Objectives of the investigation | 6

2. REVIEW OF LITERATURE | 7-21

2.1 Mango tissue culture | 11
2.1.1 Induction of embryogenesis in nucellar tissue | 11
2.1.1.1 Hormonal factors influencing nucellar embryogenesis | 15
2.1.2 Augmentation of nucellar embryogenesis and maintenance of embryogenic cultures | 17
2.1.3 Maturation, germination and conversion (plantlet formation) of somatic (nucellar) embryos | 19
2.1.4 Hardening of in vitro-raised plantlets of mango | 21

3. MATERIALS AND METHODS | 22-29

3.1 Source of experimental plant material | 22
3.2 Surface sterilization of fruits | 22
3.3 Explants 22
3.4 Culture media 23
3.4.1 Preparation of stock solutions 23
3.4.2 Composition of basal media 23
3.4.3 Adjustment of pH, gelling of medium and sterilization 25
3.5 Inoculation 25
3.6 Incubation of cultures 25
3.7 Microtomy 26
3.7.1 Fixation of the plant material 26
3.7.2 Embedding, sectioning and staining 26
3.8 Processing and hardening of plantlets ready for transplantation to potted soil 28

Abbreviations and signs used

4. RESULTS 30-138
(with 180 figures)
4.1 Induction of nucellar embryogenesis 30
4.1.1 M. indica var. Ambalavi 30
4.1.1.1 Effects of fruit size on activation of cell division in nucellar tissue and differentiation of embryos from nucellus tissue 30
4.1.2 Effects of different cytokinins used along with auxins on activation of nucellar tissue and formation of embryos 33
4.1.2 M. indica var. Dashehari 35
4.1.2.1 Effect of fruit size on activation of cell division in nucellar tissue and differentiation of embryos from nucellus tissue 35
4.1.2.2 Effect of various treatments on induction of nucellar embryogenesis 38
4.1.3 M. indica var. Romani 40
4.1.3.1 Effect of fruit size on activation of cell divisions in nucellus and differentiation of embryos from nucellar tissue 40
4.1.3.2 Effect of various treatments on activation of cell division in nucellus and differentiation of embryos from activated nucellar tissue 43
4.1.4 *M. indica* var. Chausa

4.1.4.1 Effect of fruit size on activation of cell division in nucellar tissue and differentiation of embryos from nucellus

4.1.4.2 Effects of various treatments on induction of nucellar embryogenesis

4.2 Augmentation of nucellar embryogenesis and sustained proliferation of nucellar embryos in prolonged cultures

4.2.1 *M. indica* var. Ambalavi

4.2.1.1 Effect of basal media

4.2.1.2 Effect of different concentrations of NAA and IAA on embryo proliferation

4.2.1.3 Effects of different concentrations of BAP and 2iP used along with 0.5 mg l⁻¹ IAA

4.2.1.4 Effect of AdS concentrations on embryo proliferation

4.2.2 *M. indica* var. Dashehari

4.2.2.1 Effect of basal media

4.2.2.2 Effect of IAA and NAA on rate of embryo proliferation

4.2.2.3 Effect of various concentrations of BAP and 2iP used along with 0.5 mg l⁻¹ IAA

4.2.1.4 Effect of various concentrations of AdS

4.2.3 *M. indica* var. Romani

4.2.3.1 Effect of basal media

4.2.3.2 Effect of IAA and NAA on embryo proliferation

4.2.3.3 Effect of various concentrations of BAP and 2iP used along with 0.5 mg l⁻¹ IAA

4.2.3.4 Effect of various concentrations of AdS used along with 0.15 mg l⁻¹ BAP, 0.15 mg l⁻¹ 2iP and 0.5 mg l⁻¹ IAA

4.2.3.5 Effect of CaCl₂ concentration on embryo proliferation

4.2.4 *M. indica* var. Chausa

4.2.4.1 Effect of basal media

4.2.4.2 Effect of m-Inositol and few ethylene inhibitors on necrosis of embryogenic tissue and fasciation of embryos
4.2.4.3 Effect of various cytokinins used along with 0.5 mg l⁻¹ NAA
4.2.4.4 Effect of various concentrations of BAP and 2iP used along with 0.5 mg l⁻¹ IAA
4.2.4.5 Effect of various concentrations of AdS used along with 0.15 mg l⁻¹ BAP, 0.15 mg l⁻¹ 2iP and 0.5 mg l⁻¹ IAA
4.3 Development, maturation, germination and convertibility of nucellar embryos
4.3.1 *M. indica* var. Ambalavi
  4.3.1.1 Effect of basal medium and its physical state
  4.3.1.2 Effect of various concentrations of ABA, CCC and B-9 used along with PEG, D-sorbitol and D-mannitol and size of embryos
  4.3.1.3 Effect of various growth hormones used at different concentrations along with 0.01 mg l⁻¹ ABA and 100 mg l⁻¹ PEG on embryo germination and plantlet formation
  4.3.1.4 Effect of different concentrations of PEG and different levels of reduced nitrogen
  4.3.1.5 Effect of aeration and radial shaking on germination and convertibility of embryos
  4.3.1.6 Effect of physical state of medium on plantlet growth
4.3.2 *M. indica* var. Dashehari
  4.3.2.1 Effect of basal medium and its physical state
  4.3.2.2 Effect of various concentrations of ABA, CCC and B-9 used along with different concentrations of PEG, D-sorbitol and D-mannitol
  4.3.2.3 Effect of various growth hormones used at different concentrations along with 0.01 mg l⁻¹ ABA and 100 mg l⁻¹ PEG on germination and plantlet formation
  4.3.2.4 Effect of PEG and different levels of reduced nitrogen
  4.3.2.5 Effect of aeration and radial shaking on germination and convertibility of embryos
  4.3.2.6 Effect of physical state of medium on plantlet growth
4.3.3 *M. indica* var. Romani
4.3.3.1 Effect of basal medium and its physical state 106
4.3.3.2 Effect of ABA, CCC and B-9 used with PEG, D-sorbitol and D-mannitol used at different concentrations on development and maturation 106
4.3.3.3 Effect of various growth hormones on germination and convertibility 108
4.3.3.4 Effect of different concentrations of PEG and different levels of reduced nitrogen 110
4.3.3.5 Effect of radial shaking, aeration on processing of embryos and physical state of plantlets growth 113
4.3.4 M. indica var. Chausa 114
4.3.4.1 Effect of basal medium and its physical state 114
4.3.4.2 Effect of ABA, CCC and B-9 used along with D-sorbitol, D-mannitol and PEG at different concentrations on development and maturation 114
4.3.4.3 Effect of various growth hormones on germination and plantlet formation 116
4.3.4.4 Effect of different concentration of PEG and various levels of reduced nitrogen 118
4.4 Rooting of isolated shoots 120
4.4.1 M. indica var. Ambalavi 120
4.4.1.1 Effect of basal medium 120
4.4.1.2 Effect of duration of pulse treatment 120
4.4.1.3 Effects of different concentration of auxins used with or without phenolic acid 121
4.4.1.4 Effects of physical state of medium 121
4.4.1.5 Effects of 1-step, 2-step and 3-step procedure on root induction 123
4.4.2 M. indica var. Dashehari 125
4.4.2.1 Effect of basal medium 125
4.4.2.2 Effect of duration of pulse treatments 125
4.4.2.3 Effect of different concentrations of auxins with or without phenolic acid 125
4.4.2.4 Effect of physical state of medium 125
4.4.2.5 Effect of 1-step, 2-step and 3-step procedure on root induction 126
4.4.3 M. indica var. Romani 128
4.4.4 M. indica var. Chausa 128
4.5 Hardening and transplantation of in vitro-raised nucellar plantlets 129
4.5.1 In vitro hardening 129
4.5.1.1 Nurturing of plantlets in inorganic salt solution 129
4.5.1.2 Nurturing of plantlets on semisolid medium 132
4.5.2 Ex vitro hardening, transplantation and survival of plantlets 132
4.5.2.1 Ex vitro performance of nucellar plantlets and adventitiously rooted
shoots-plantlets 133
4.5.3 Ex vitro rooting 134
4.6 Morphogenesis 135
4.7 Histological studies 137
4.7.1 M. indica var. Dashehari 137
4.7.2 M. indica var. Romani 138

5. DISCUSSION 139-151

6. SUMMARY AND CONCLUSIONS 152-157
6.1 Induction of nucellar embryogenesis in ovular halves 152
6.2 Augmentation of nucellar embryogenesis and sustained roliferation of
embryos in prolonged culture 154
6.3 Development, maturation, germination and convertibility plantlet
formation) of nucellar embryos 155
6.4 Rooting of Isolated shoots 156
6.5 Hardening and transplantation of in vitro-raised nucellar plantlets 156
6.6 Morphogenesis and Histogenesis 157

LITERATURE CITED 158-177