
A study on the invariants for classical dynamical

systems

1 Introduction

For a better understanding of complicated physical phenomena such as weather changes,

earthquakes, cardiac arrhythmias, etc., scientists have found it useful to introduce

mathematical models whose time evolution might exhibit some features very simi-

lar to those of the original one. The evolution of typical dynamical systems is of-

ten described by nonlinear ordinary and partial differential equations. Characteristi-

cally, these nonlinear dynamical systems show regular as well as chaotic trajectories

[1, 2, 3, 4, 5] in phase space, depending on the number of dependent variables in-

volved, the nature and the range of the external forces and the parameters involved,

and the energy of the system. Since lot of parameters are involved in equation of

motion, which make it difficult to find an exact analytical close form solution of it.

It is, in fact, one of the important problems in nonlinear dynamics to identify when

a given system displays regular motion. In other words, under what conditions the

given system, be it Hamiltonian or non-Hamiltonian, becomes completely integrable

and when it is nonintegrable [1, 2, 3, 4, 5] exhibiting irregular or chaotic motion.

Then naturally, the question which arises in this regard is: what is meant by inte-

grability and when does it occur? The answer to the former question is somewhat

vague as the concept of integrability is itself in a sense not well defined and there

seems no unique definition for it yet. The latter is even more difficult to answer, as

no well defined criteria seem to exist to identify integrable cases. Integrability can be

considered as a mathematical property that can be successfully used to obtain more

predictive power and quantitative information to understand the dynamics of the sys-

tem globally.

There are various circumstances in which interest in integrability can arise. For ex-
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ample, when studying a specific physical problem, one will usually be interested in

all information that can be obtained on the system. Integrability is one such prop-

erty that can be successfully used [1] to get more predictive power. It will then be

important to know whether the system is integrable, and if it is, one wants to know

as many quantities as possible whose values are conserved during the time evolution

of the system. The global quantity mentioned above is a function(al) from the space

of dependent variables (phase space) to the real (or complex) numbers. This func-

tion is in the literature variously called as a constant of motion, integral of motion,

conserved quantity, second invariant etc. Depending on the number of degrees of

freedom present in the system there can be several, even an infinity of constants of

motion. As the invariants are analytic functions, therefore, one can learn a lot about

nonlinear dynamical systems as analytic results are much easier to use, to interpret

and to generalize, and can also be further utilized to develop suitable schemes in or-

der to deal with non integrable systems by treating the integrable case as basic zeroth

order exact solution.

Recent investigations show that the integrability nature of a dynamical systems can be

methodically investigated using the following two broad notions [1, 5]. The first one

uses essentially the literal meaning: integrable - integrated with the required num-

ber of integration constants; nonintegrable - proven not to be integrable. This loose

definition of integrability can be related to the existence of single valued, analytic

solutions, for differential equations lead to the notion of integrability in the complex

plane.

The second notion, particularly applicable to Hamiltonian systems, is to look for a

sufficient number of single valued, analytic, involutive integrals for a Hamiltonian

system with N-degrees of freedom, so that the associated Hamilton’s equations of

motion, in principle, can be integrated by quadratures in the sense of Liouville.

There are, of course, many approaches, which one can try to search invariants if

the system seems to be integrable. However, in practical problems the prospects of

integrability should be tested by other means, e.g. numerically and by singularity

analysis. If the system does not fail either test, the next step would be to search for

the invariant(s).

Searching constants of motion/invariants for dynamical systems is quite vital as these

mathematical structures have multitude of applications in different branches of sci-
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ences [4, 5]. Dynamical invariant operators proved useful in solving Schrodinger

equation for certain class of time dependent potentials [6, 7, 8]. There is an intimate

relation between invariants and underlying symmetries for physical systems with the

existence of action variables which, in turn, rules out the possibility of occurrence of

chaos and then the corresponding equations of motion merely reduce to quadratures.

Invariants are also utilized to check the accuracy of numerical simulations of dynam-

ical systems [9].

In past, many concerted efforts had been made to devise different methods to isolate

invariants and find their possible utilities and interpretations for both time depen-

dent and time independent systems [1, 4, 6, 7, 8]. Recently Struckmeier and Riedel

[9] proposed a novel technique for the construction of quadratic invariants for non-

autonomous systems. In fact, quadratic invariants are widely studied because of their

resemblance with system’s Hamiltonian whose kinetic energy part is also quadratic

in momenta. Naturally one can be curious to look for higher order invariants and

their possible implications. Such studies can also be applied to check the veracity of

the existing methods for construction of invariants. In this direction, many authors

have also paid their attention to investigate cubic and quartic invariants and their ap-

plications [10, 11, 12, 13, 14]. The higher order invariants are particularly interesting

for establishing super integrability of dynamical systems [15]. With this motivation

in the present work, we extended the approach of Struckmeier and Riedel [9] and

obtained invariants for number of time dependent systems.

It is an established fact that the Hamiltonian formulation for a physical system in

real phase space proves suitable to solve equations of motion and to understand the

underlying dynamics. But in some cases, the formulation of the concerned prob-

lem in complex phase space can be a better path to get them solved. One can track

the utility of complex Hamiltonians in the study of nuclear models, atomic, molec-

ular and nuclear scattering phenomena, chemical reactions, population biology, de-

localized transitions in type-II superconductors and laser physics [16, 17, 18, 19].

The complex Hamiltonians now a days become more potent with the advent of PT -

Symmetric quantum mechanics [20].

To find some signatures of complex systems in classical mechanics, recently Kaushal

and co-workers [10, 11] studied complex invariants for both time dependent and

time independent systems within the framework of an extended complex phase space

3



(ECPS) characterized by x = x1 + ip2 and p = p1 + ix2. Recently the ECPS

approach is further applied to find higher order complex invariants for a number of

systems [21, 22]. Some workers have also solved Schrodinger equation for a variety

of one and two dimensional complex Hamiltonian systems within the framework of

ECPS [23, 24, 25, 26, 27].

Since in the ECPS the degrees of freedom of a system get doubled, therefore this

complexifying scheme is better suited to study one dimensional systems. A PT -

Symmetric form of a complex Hamiltonian in the ECPS can be found by invoking

PT invariance condition PT (x1, p1, x2, p2; i) → (−x1, p1,−x2, p2;−i).

2 Methodology

In past, many methods [9, 11, 17, 24, 25, 26, 27] have been developed to obtain con-

stants of motion which are in involution, that span from elementary algebraic methods

to symmetry considerations evaluated through symplectic group transformations or

Noether’s theorem. Recently various researchers have applied some new methods for

construction of invariants [28, 29, 30, 31, 32, 33, 34, 35]. But none of such methods

have a universal character, and in most of the cases one or more adhoc assumptions

are to be made for obtaining concrete results.

There are, of course, many approaches, which one can try to search invariants if sys-

tem seems to be integrable. However, while dealing practical problems the prospects

of integrability should be tested by other means, e.g. numerically and by singularity

analysis [16, 17]. If the system does not fail either test, the next step would be to

search for the invariant(s).

Now we describe the methods used in the present thesis for the investigation of in-

variants.

2.1 Rationalization method

Whittaker [5] introduced the rationalization method for the construction of invariants,

second order in momenta, of time independent (TID) systems. Subsequently, this

method has been used by many researchers for finding invariants of both TID and

time dependent (TD) systems in one and two dimensions. A brief description of this

method is as follows.
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Consider a three-dimensional TD dynamical system whose Hamiltonian is given as

H =
1

2
(p2x + p2y + p2z) + V (x, y, z, t). (1)

Considering the existence of a constant of motion I (say, fourth order in momenta)

for the system, eq.(1), of the form

I = a0 + aiξi +
1

2!
aijξiξj +

1

3!
aijkξiξjξk +

1

4!
aijklξiξjξkξl, (2)

where i, j, k, l = 1, 2, 3, 4 , ξ1 = ẋ1, ξ2 = ẋ2, ξ3 = ẋ3 and a0, ai, aij , aijk, aijkl, are

functions of coordinates x1, x2 and x3 only.

The invariance condition of the function I implies

dI

dt
=
∂I

∂t
+ [I,H]PB = 0, (3)

where [..]PB is Poisson bracket. On rationalizing the expression, obtained after using

eq.(1) and (2) in eq.(3), with respect to the powers of ξi, ξj , ξk and their all pos-

sible products, we get a system of over-determined coupled first order differential

equations for unknown coefficient functions a0, ai, aij , aijk and aijkl. The mutually

consistent solutions of these partial differential equations for potential V give the de-

sired invariant. As this method gives exact invariants for a system, one can utilize

it to find higher order invariants for both real and complex Hamiltonian systems in

two or higher dimensions. We used this method in the chapter 4 for construction of

higher order real and complex classical invariants of a number of dynamical systems.

2.2 Struckmeier and Riedel method

Recently, for construction of exact invariants for TD classical Hamiltonians systems,

Struckmeier and Riedel (SR) gave a formulation by considering a system of a non-

relativistic ensemble of N -particles of the same species moving in an explicitly TD

and velocity-independent potential, whose Hamiltonian H takes the form

H =
∑ 1

2
[p2x + p2y + p2z] + V (x, y, z, t), (4)

where x, y and z represent the N component vectors of the spatial coordinates of

all particles and for each particle i, from the canonical equations, the equations of

motion are given as

ẋ = px; ṗx = −∂V (x, y, z, t)

∂x
, (5)
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and likewise for the y and z degrees of freedom. The solution functions x(t), y(t),

z(t) and px(t), py(t), pz(t) define a path within the 6N -dimensional phase space that

completely describes the system’s time evolution.

A quantity I = I(x(t), y(t), z(t), px(t), py(t), pz(t), t) constitutes an invariant of the

particle motion if its total time derivative vanishes i.e.

dI

dt
=
∂I

∂t
+

∑[
∂I

∂x
ẋ+

∂I

∂y
ẏ +

∂I

∂z
ż +

∂I

∂px
ṗx +

∂I

∂py
ṗy +

∂I

∂pz
ṗz

]
= 0. (6)

Now a special ansatz for I being at most quadratic in the velocities is given as

I = f2(t)(P
2
x + P 2

y + P 2
z ) + f1(x, t)px + g1(y, t)py + h1(z, t)pz + f0(x, y, z, t), (7)

where the set of functions f2(t), f1(x, t), g1(y, t), h1(z, t) and f0(x, y, z, t) that ren-

der I invariant are to be determined. The set of unknown functions f1(x, t), g1(y, t),

h1(z, t) and f0(x, y, z, t) are obtained in terms of f2(t) by rationalizing the the total

time derivative of eq.(7), after inserting equations of motion (5), with respect to the

powers of velocities ẋ, ẏ, ż and their combinations.

This form of invariants has successfully been used to assess accuracy of numerical

simulations of TD systems. Real and complex forms of invariant, eq.(7), are studied

in the present thesis in chapters 2-4.

3 Organization of the thesis

The present thesis contains total five chapters. The introductory first chapter contains

a detailed background of the work carried out. Here we introduced the concept of

integrability, its definition and importance in nonlinear dynamics. We also gave here

the meaning, the types, the methods of construction and applications of invariants.

The second chapter encompasses the investigation of invariants of five systems namely

a two-dimensional coupled quartic Hamiltonian system, Toda potential, one dimen-

sional general quartic polynomial potential, Morse potential and the Hulthen’s poten-

tial using SR method. Here we also generalized the SR method to obtain fourth order

invariants of a couple of systems i.e. one dimensional harmonic oscillator and a one

dimension a general time dependent potential.

The subject matter of third chapter is to isolate dynamical invariants of four complex

classical systems in zz̄-space viz linearly confining system, a coupled non-linear os-

cillator system, a shifted Harmonic oscillator system and a general inverse potential
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is presented.

Fourth Chapter comprises the details of the extended complex phase space (ECPS)

approach. Here Cubic Invariant of a simple harmonic oscillator, quartic invariants

of a shifted harmonic oscillator, PT -symmetric shifted harmonic oscillator and sim-

ple harmonic oscillator are investigated using rationalization method. Here we also

found TD invariants of general nonlinear quartic oscillator within the framework of

ECPS utilizing the SR method.

In the concluding fifth chapter, we summarized the thesis by highlighting the major

finding of the present work. A brief note on the future scope of the present work is

also given.

4 Work carried out

In the present thesis work, five studies are carried out which spanned from chapter

2-4. In what follows, a very brief account of the potentials and their corresponding

invariants is presented.

In the first study, we took five real TD potentials of physical importance and found

their corresponding quadratic invariants using SR method. The list of potentials is

given as

(i). A two-dimensional coupled quartic potential

Va = a1(t)(x
2+y2)+a2(t)xy+a3(t)(x

4+y4)+a4(t)x
2y2+a5(t)x

3y+a6(t)xy
3,

(ii). The Toda potential

Vb = eα(t)x−y + e−α(t)x−y,

(iii). A one-dimensional quartic potential

Vc = a0(t) + a1(t)x+ a2(t)x
2 + a3(t)x

3 + a4(t)x
4,

(iv). The Morse potential

Vd = V0(t)(e
−2ax − 2e−ax,

(v). The Hulthen’s potential

Ve =
e−a(t)x

1− e−a(t)x
,

and the corresponding invariants of the above five cases are given respectively as

If2a =
gx,y
2f2

(x2 + y2) + 1
f2
[(f2px − 1

2 ḟ2x)
2 + (f2py − 1

2 ḟ2y)
2
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+ 2f22xy(a2 + a4xy + a5x
2 + a6y

2) + 2f22a3(x
4 + y4)],

If2b =
1
f2
[(f2ẋ− 1

2 ḟ2x)
2 +(f2ẋ− ḟ2x)

2 +
gx,y
2 (x2 + y2)+ 2f22 (e

αx−y + e−αx−y)],

If2c =
1
f2
[(f2p− 1

2 ḟ2x)
2 + gx

2 x
2 + 2f22 (a0 + a1x+ a3x

3 + a4x
4)],

If2d = 1
f2
[(f2p− 1

2 ḟ2x)
2 + 2f22V (x, t) + 1

2gxx
2],

If2e =
1
f2
[(f2p− 1

2 ḟ2x)
2 + 2f

2

2V + gx
2 x

2].

In the second study, we considered two real TD potentials and obtained their corre-

sponding quartic invariants using SR method. The list of potentials is given as

(i). A dynamical harmonic oscillator

Va =
1

2
ω2(t)x2.

(ii). A general time dependent potential

Vb = a(t)xm + b(t)xn,

and their invariants are listed as

If4a = f4[{p2 + ω2x2}2 − 4
3ωω̇x

3p + 1
3 ω̇

2x4 + 1
3ωω̈x

4] + ḟ4{−xp3 − 5
3ω

2x3p +

7
6ωω̇x

4}

+ f̈4{1
2x

2p2 + 2
3ω

2x4} − 1
6

...
f4x

3p+ x4

24{
1
2

...
f4

2

f̈4
+ gx

f̈4
},

If4b = f4[{p2+2(axm+bxn)}2−4{ ȧxm+1

m+1 + ḃxn+1

n+1 }p+4{ äxm+2

(m+1)(m+2)+
b̈xn+2

(n+1)(n+2)}]

+ḟ4{−xp3−3m+4
m+1 ax

m+1p+3n+4
n+1 bx

n+1p+ 3m+8
(m+1)(m+2) ȧx

m+2+ 3n+8
(n+1)(n+2) ḃx

n+2}

+ f̈4{1
2x

2p2 + m+2
m+1ax

m+2 + n+2
n+1bx

n+2} −
...
f4
6 x

3p+ x4

24{
...
f4

2

2f̈4
+ gx

f̈4
}.

In third study we extended the SR approach in complex zz̄ space and derived invari-

ants for TD classical systems. The potentials taken up in this study are as follow

(i). A linearly confining potential

Va = ω(t)(zz̄)1/2 − β(t)(zz̄)−1/2,

(ii). A shifted harmonic oscillator potential

Vb =
1

2
a(t)(z + z̄)− i

1

2
a(t)(z − z̄) +

1

2
ω2(t)(zz̄),

(iii). A coupled nonlinear oscillator

Vc =
1

2
ω2zz̄ +

1

2
β(zz̄2 + z̄z2),

(iv). An inverse potential

Vd = ω
z

z̄
+ β

z̄

z
,
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and their invariants respectively are

If2a = 1
f2
[(f2ż− 1

2 ḟ2z)
2+(f2 ˙̄z− 1

2 ḟ2z̄)
2]+f2[ω(zz̄)

1/2−β(zz̄)−1/2]+ g
2f2

(z2+z̄2),

If2b =
1
f2
[(f2ż − 1

2 ḟ2z)
2 + (f2 ˙̄z − 1

2 ḟ2z̄)
2] + 2f2[ω

2zz̄ + a(z + z̄)− ia(z − z̄)] +

g
2f2

(z2 + z̄2),

If2c =
1
f2
[(f2ż− 1

2 ḟ2z)
2+(f2 ˙̄z− 1

2 ḟ2z̄)
2]+2f2zz̄[ω

2 + β(z + z̄)zz̄]+ g
2f2

(z2+ z̄2),

If2d = 1
f2
[(f2ż − 1

2 ḟ2z)
2 + (f2 ˙̄z − 1

2 ḟ2z̄)
2] + 4f2[ω

z
z̄ + β z̄

z ] +
g

2f2
(z2 + z̄2).

Fourth study contains the construction of quartic, cubic and quadratic invariants of

some TID and TD systems whose potentials are given as

(i). A shifted harmonic oscillator

Va = ax+ bx2,

(ii). A PT -symmetric shifted harmonic oscillator with real and imaginary parts

V1b = −a2p2 + b1(x
2
1 − p22), V2b = a2x1 + 2b1x1p2,

(iii). A simple harmonic oscillator

Vc =
1

2
ω2x2,

the corresponding quartic invariants of the above potentials are written as

Ia = (p1 + ix2)
2{1

3(ψ1 + iψ2)(x
3
1 + ip32 + 3ix1p2(x1 − ip2))

+ (ψ3 + iψ4)(x
2
1 + p22)}+ 8

15(c1 + ic2){(x1 − ip2)
5 − 10x1p

4
2

+ 10ip2x
4
1} − 4

3(d1 + id2){x41 − p42 + 4i(p2x
3
1 + p32x1)}

+ 2
3(e1 + ie2){(x1 − ip2)

3 + 6ix1p2(x1 − ip2)}

+ (α1 + iα2)(x1 − ip2)(p1 + ix2)
4,

Ib = (α1 + iα2)[{4b1
3 (x31 + ip32 + 3ix21p2 + 3x1p

2
2) + 2ia2(x

2
1 + p22)

+ (x1 − ip2)(p1 + ix2)
2}(p1 + ix2)

2 +
8b21
15 {(x1 − ip2)

5 − 10x1p
4
2

+ 10ip2x
4
1}+ 4ib1a2

3 (x41 − p42 + 4ip2x
3
1 + 4ip32x1)

− 2a22
3 {(x1 − ip2)

3 + 6ix21p2 + 6x1p
2
2}],

Ic = (α1 + iα2)[
2
3ω

2(x31 + ip32 + 3ix21p2 + 3x1p
2
2)(p1 + ix2)

2

+ 8
15ω

4{(x1 − ip2)
5 − 10x1p

4
2 + 10ip2x

4
1}

+ (x1 − ip2)(p1 + ix2)
4],

and the cubic invariant of a simple harmonic oscillator is obtained as

Ic = 4ω2α1(p1 + ix2)
(
x31 − ip32 + 3x1p

2
2 + 3ip2x

2
1 + (x1 − ip2)(p1 + ix2)

2/ω2
)
.
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Following are a couple of potentials taken up in the fourth study to obtain quadratic

invariants:

(iv). A TD harmonic oscillator

Va =
1

2
w2(t)x2,

(v). A general nonlinear quartic potential

Vb = a0 + ax+ bx2 + cx3 + dx4,

(vi). The PT -symmetric case of the general nonlinear quartic potential, whose real

and imaginary parts are given as

V1c = a0r − a2p2 + b1(x
2
1 − p22) + c2p

3
2 − 3c2x

2
1p2 + d1(x

2
1 − p22)

2 − 4d1x
2
1p

2
2,

V2c = a0i + a2x1 + 2b1x1p2 + c2x
3
1 − 3c2x1p

2
2 + 4d1x1p2(x

2
1 − p22),

whose respective invariants are written as

Ia = 2Λx∗p2 − Λ̇
2 (x

2
1 + p22)p+

Λ̈
12(x

3
1 + ip32) +

Λ̈
4 ix

∗x1p2

+ 16iΛω2x∗x1p2 +
Λω2

3 (x31 + ip32),

Ib = 2Λx∗p2 − Λ̇
2 (x

2
1 + p22)p+

Λ̈
12x

3
1 − iΛ̈∗

12 p
3
2 +

ix1p2Λ̈
4 x∗

+ 16Λa(x21 + p22) +
32Λ
3 b(x31 + ip32) + 16Λc(x41 − p42) +

64Λ
5 d(x51 − ip52)

− 32ix1p2Λbx− 32ix1p2Λ
∗c∗(x21 + p22) + 64ix1p2Λd(x

3
1 + p32),

Ic = 2Λx∗p2 − Λ̇
2 (x

2
1 + p22)p+

Λ̈
12x

3
1 − iΛ̈∗

12 p
3
2 +

ix1p2Λ̈
4 x∗ + 16iΛa2(x

2
1 + p22)

+ 32Λ
3 b1(x

3
1 + ip32) + 16iΛc2(x

4
1 − p42) +

64Λ
5 d1(x

5
1 − ip52)

− 32ix1p2Λb1x− 32x1p2Λ
∗c2(x

2
1 + p22) + 64ix1p2Λd1(x

3
1 + p32).

In last study we extended the SR method into ECPS to investigate the exact invariants

of complex TD systems. The following one-dimensional nonlinear complex quartic

potential has been considered

V = (a1r + ia1i)(x1 + ip2) + (a2r + ia2i)(x1 + ip2)
2

+(a3r + ia3i)(x1 + ip2)
3 + (a4r + ia4i)(x1 + ip2)

4,

and the invariant for this case is obtained as

I = f2(p
2
1 − x22 + 2ip1x2)− ḟ2(x1 + ip2)(p1 + ix2) + 2f2[(a1r + ia1i)(x1 + ip2)

+ (a2r + ia2i)(x1 + ip2)
2 + (a3r + ia3i)(x1 + ip2)

3 + (a4r + ia4i)(x1 + ip2)
4]

+ f̈2
2 (x1 + ip2)

2 + (α1 + iα2)(p1 + ix2)− (α̇1 + iα̇2)(x1 + ip2) + (β + iγ).
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5 Summary and conclusions

Keeping in view multitude applications of invariants in various fields of physics, here

we extended the approaches described in [9, 10] to determine TD and TID invariants

of different orders in momenta for a number of real and complex classical systems.

The major findings of this thesis are as follow.

• In chapter two, to expand the catalogue of applications of the SR method, two

studies have been carried out. In the first endeavor, we found quadratic invari-

ants of five systems namely a two-dimensional coupled quartic Hamiltonian

system, Toda potential, one dimensional general quartic polynomial potential,

Morse potential and the Hulthen’s potential. In the second work, we gener-

alized the SR method to obtain fourth order invariants of a couple of systems

i.e. one dimensional harmonic oscillator and a one dimensional general time

dependent potential.

• It is well known that a complex Hamiltonian description of many physical

problems is better route to obtain some additional features which were not

possible otherwise. One can find innumerable number of such problems in

literature. The importance of complex Hamiltonians becomes much more af-

ter the development of PT - symmetric quantum mechanics. With a view to

find utility of complex Hamiltonians in classical realms and to expand the do-

main of applicability of the SR method, in the third chapter, we extended the

SR method in complex zz̄-space with an aim to isolate dynamical invariants

of complex classical systems. This type of scheme of coordinate transforma-

tion for deriving invariants has also been utilized in many past studies. Here

we successfully obtained invariants of four physical systems, namely linearly

confining system, a coupled nonlinear oscillator system, a shifted Harmonic

oscillator system and a general inverse potential.

• In continuity to our endeavor of dealing of complex Hamiltonian systems, in

the fourth chapter, we presented two studies on invariants using two different

approaches by scaling the concerned Hamiltonians on an extended complex

phase space characterized by x = x1 + ip2, p = p1 + ix2.. In the first one,

keeping in view the significance of higher order invariants, quartic, cubic and

quadratic complex invariants have been determined utilizing the rationalization
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method for one dimensional TID and TD classical systems. We found quartic

invariants of a shifted harmonic oscillator and its PT -symmetric variant and

quartic and cubic invariants of a simple harmonic oscillator. We also obtained

quadratic invariants of a TD harmonic oscillator and a general TD nonlinear

quartic oscillator. In our last work, the SR method has again been developed

within the framework of the ECPS to derive quadratic invariants of a TD non-

linear quartic oscillator. This particular study can have some interesting bear-

ings in the realms of newly developing field of PT -symmetric classical and

quantum mechanics.
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