List of Figures

1.1. Illustration of the response of a dielectric medium (a) without and (b) with the application of optical field 2
1.2. Third-harmonic generation. (a) Geometry of the interaction, (b) Energy level description 8
1.3. Schematic of degenerate four wave mixing (a) backward geometry and (b) forward geometry 9
1.4. Schematic diagram of (a) self and (b) pump-probe two photon absorption process 10
1.5. Schematic of spontaneous Raman scattering 11
1.6. Energy level diagrams for (a) Stokes Raman scattering and (b) anti-Stokes Raman scattering 11
1.7. Schematic representation of Brillouin scattering 13
1.8. Schematic diagram of Raman scattering 14
1.9. Strong electric field induced anisotropic molecular reorientation 15
1.10. Energy level diagram of saturable and reverse saturable absorption 18
1.11. Schematic diagram of five level energy level diagram 19
2.1. (a) Schematic open aperture z-scan setup and (b) open aperture z-scan setup used in present work. D-Detector, S-Sample, L-Lens, A1-Aperture 39
2.2. Open aperture z-scan traces (a) saturable absorption and (b) reverse saturable absorption curves 40
2.3. (a) Schematic closed aperture z-scan setup and (b) closed aperture z-scan setup used in present work. D-Detector, S-Sample, L-Lens, A1 & A2-Aperture 41
2.4. Depicting the graphical z-scan experiment, used to measure the optical nonlinearities 42
2.5. Closed aperture z-scan transmittance curve depicting self-focusing and defocusing nature

2.6. (a) Closed aperture z-scan trace, (b) open aperture z-scan trace and (c) closed/open aperture z-scan trace

2.7. Graph illustrating the meaning of ΔT_p-v

2.8. Schematic diagram of ideal optical limiter

2.9. Illustrating the energy spreading type of optical limiters

2.10. Schematic optical limiting device based on nonlinear absorption

2.11. (a) Schematic optical power limiting set up and (b) optical power limiting set up used in present work. D-Detector, S-Sample, L-Lens, NDF-Neutral Density Filter, A1-Aperture

2.12. UV-VIS spectrophotometer used in present work

2.13. FTIR spectroscopic instrument used in present work

2.14. Pellet maker and prepared polymer pellets used in present work

2.15. Abbe’s refractometer used in present work

3.1. General structure of anthraquinone

3.2. Basic structure of anthracene

3.3. Basic structure with carbon numbering of anthraquinone

3.4. Molecular structure and UV-VIS absorption spectra of AB 25 at concentrations 20 µM, (b) 25 µM, (c) 30 µM, (d) 35 µM and (e) 40 µM

3.5. Molecular structure and UV-VIS absorption spectra of AB 40 at concentrations 20 µM, (b) 25 µM, (c) 30 µM, (d) 35 µM and (e) 40 µM

3.6. Molecular structure and UV-VIS absorption spectra of (a) 20 µM, (b) 25 µM, 30 µM, (d) 35 µM and (e) 40 µM concentrations of AB 74
3.7. Molecular structure and UV-VIS absorption spectra of AB 80 at concentrations 20 µM, (b) 25 µM, (c) 30 µM, (d) 35 µM and (e) 40 µM

3.8. Molecular structure and UV-VIS absorption spectra of AB 129 at concentrations 20 µM, (b) 25 µM, (c) 30 µM, (d) 35 µM and (e) 40 µM

3.9. Molecular structure and UV-VIS absorption spectra of RBBR at concentrations 20 µM, (b) 25 µM, (c) 30 µM, (d) 35 µM and (e) 40 µM

3.10. Open aperture z-scan curves of AB 25 and AB 80 at concentrations (a) 20 µM, 25 µM, (c) 30 µM and (d) 35 µM

3.11. Open aperture z-scan curves of AB 40 and AB 74 at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM and (d) 35 µM

3.12. Open aperture z-scan curves of AB 129 and RBBR at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM and (d) 35 µM

3.13. Five level energy diagram of a dye molecule. Radiative transitions are indicated by straight lines and non-radiative transitions by dotted lines

3.14. Nonlinear absorption coefficient β_{eff} versus on-axis input intensity I_0 of AB 25 and AB 80 at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM and (d) 35 µM

3.15. Nonlinear absorption coefficient β_{eff} versus on-axis input intensity I_0 of AB 40 and AB 74 at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM and (d) 35 µM

3.16. Nonlinear absorption coefficient β_{eff} versus on-axis input intensity I_0 of AB 25 and AB 80 at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM and (d) 35 µM

3.17. Closed aperture z-scan traces of AB 25 and AB 80 at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM and (d) 35 µM
3.18. Closed aperture z-scan traces of AB 40 and AB 74 at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM and (d) 35 µM
3.19. Closed aperture z-scan traces of AB 129 and RBBR at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM and (d) 35 µM
3.20. Concentration dependence of nonlinear absorption coefficient β_{eff} and nonlinear refraction coefficient γ of AB 25 and AB 40
3.21. Concentration dependence of nonlinear absorption coefficient β_{eff} and nonlinear refraction coefficient γ of AB 74 and AB 80
3.22. Concentration dependence of nonlinear absorption coefficient β_{eff} and nonlinear refraction coefficient γ of AB 129 and RBBR
3.23. UV-VIS absorbance spectra for 40 µM concentration of anthraquinone dyes
3.24. Optical power limiting response of AB 25 and AB 40 at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM, (d) 35 µM and (e) 40 µM
3.25. Optical power limiting response of AB 74 and AB 80 at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM, (d) 35 µM and (e) 40 µM
3.26. Optical power limiting response of AB 129 and RBBR at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM, (d) 35 µM and (e) 40 µM
3.27. Self-diffraction ring patterns of (i) AB 25, (ii) AB 40, (iii) AB 74, (iv) AB 80, (v) AB 129 and (vi) RBBR dyes at concentrations (a) 20 µM, (b) 25 µM, (c) 30 µM, (d) 35 µM and (e) 40 µM
3.28. Laser spot size variation of anthraquinone dyes (i) AB 25, (ii) AB 40, (iii) AB 74, (iv) AB 80, (v) AB 129 and (vi) RBBR dyes at (a) far from focus, pre-focus transmittance maximum, (c) post-focus transmittance minimum and (d) away from focus
4.1. Schematic of (a) basic structure of aniline monomer and (b) molecular structure of polyaniline

4.2. UV-VIS absorption spectra of PANI in H_{2}SO_{4} and HCl acids at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml

4.3. Schematic of (a) basic structure of pyrrole monomer and (b) molecular structure of polypyrrole

4.4. UV-VIS absorption spectra of PPy in H_{2}SO_{4} acid at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml

4.5. Schematic of (a) basic structure of o-anisidine monomer and (b) molecular structure of poly (o-anisidine)

4.6. UV-VIS absorption spectra of POA in H_{2}SO_{4} acid at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml

4.7. Schematic of (a) basic structure of o-toluidine monomer and (b) molecular structure of poly (o-toluidine)

4.8. UV-VIS absorption spectra of POA in H_{2}SO_{4} acid at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml

4.9. FTIR spectra of (a) PANI (H_{2}SO_{4}), (b) PANI (HCl), (c) POT (H_{2}SO_{4}), (d) POA (H_{2}SO_{4}) and (e) PPy (H_{2}SO_{4})

4.10. Open aperture z-scan traces of 0.05 mg/ml concentrations of PANI (H_{2}SO_{4}), (b) PANI (HCl), (c) POT (H_{2}SO_{4}), (d) POA (H_{2}SO_{4}) and (e) PPy (H_{2}SO_{4}) in DMF

4.11. Nonlinear absorption coefficient β_{eff} versus on-axis input intensity I_0 of (a) PANI (H_{2}SO_{4}), (b) PANI (HCl), (c) POT (H_{2}SO_{4}), (d) POA (H_{2}SO_{4}) and (e) PPy (H_{2}SO_{4}) at 0.05 mg/ml concentration in DMF

4.12. Pure nonlinear refraction z-scan traces of (a) PANI (H_{2}SO_{4}), (b) PANI (HCl), POT (H_{2}SO_{4}), (d) POA (H_{2}SO_{4}) and (e) PPy (H_{2}SO_{4}) at 0.05 mg/ml concentrations in DMF

4.13. UV-VIS absorption spectra of 1 mg/ml concentration of conducting polymers in DMF
4.14. Optical limiting and clamping values of PPY (H$_2$SO$_4$) at
concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

4.15. Optical limiting and clamping values of PANI (H$_2$SO$_4$ and HCl
acids) at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml
in DMF

4.16. Optical limiting and clamping values of POT (H$_2$SO$_4$) at
concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

4.17. Optical limiting and clamping values of POA (H$_2$SO$_4$) at
concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

4.18. Self-diffraction ring patterns of (a) PANI (H$_2$SO$_4$), (b) PANI (HCl),
(c) POT (H$_2$SO$_4$), (d) POA (H$_2$SO$_4$) and (e) PPY (H$_2$SO$_4$) at
concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

4.19. Laser beam spot size variation as a function of sample position
relative to lens focal point of (i) PANI (H$_2$SO$_4$), (ii) PANI (HCl),
(iii) POT (H$_2$SO$_4$), (iv) POA (H$_2$SO$_4$) and (v) PPY (H$_2$SO$_4$) at (a) far
from focus, (b) pre-focus transmittance maximum, (c) post-focus
transmittance minimum and (d) away from focus

5.1. Schematic of (a) basic structure of aniline and o-toluidine
monomers, molecular structures of poly (aniline-co-o-toluidine) in
H$_2$SO$_4$ acid and molecular structures of poly (aniline-co-o-toluidine) in HCl acid of poly (aniline-co-o-toluidine)

5.2. Absorption spectra of poly (aniline-co-o-toluidine) (H$_2$SO$_4$) at
concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.3. Absorption spectra of poly (aniline-co-o-toluidine) (HCl) at
concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.4. Schematic of (a) basic structure of aniline and o-anisidine
monomers, molecular structures of poly (aniline-co-o-anisidine) in
H$_2$SO$_4$ acid and molecular structures of poly (aniline-co-o-anisidine) in HCl acid of poly (aniline-co-o-anisidine)

5.5. Absorption spectra of poly (aniline-co-o-anisidine) (H$_2$SO$_4$) at
concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.6. Absorption spectra of poly (aniline-co-o-anisidine) (HCl) at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.7. Schematic of (a) basic structure of aniline and pyrrole monomers, molecular structures of poly (aniline-co-pyrrole) in H$_2$SO$_4$ acid and molecular structures of poly (aniline-co-pyrrole) in HCl acid of poly (aniline-co-pyrrole)

5.8. Absorption spectra of poly (aniline-co-o-pyrrole) (H$_2$SO$_4$) at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.9. Absorption spectra of poly (aniline-co-pyrrole) (HCl) at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.10. FTIR spectra of (a) P(A-co-O-An), (b) P(A-co-O-T) and (c) P(A-co-Py) (H$_2$SO$_4$)

5.11. FTIR spectra of (a) P(A-co-O-An), (b) P(A-co-O-T) and (c) P(A-co-Py) (HCl)

5.12. Open aperture z-scan traces of (a) P(A-co-O-An), (b) P(A-co-O-T) and (c) P(A-co-Py) (H$_2$SO$_4$) at concentration 0.05 mg/ml in DMF

5.13. Open aperture z-scan traces of (a) P(A-co-O-An), (b) P(A-co-O-T) and (c) P(A-co-Py) (HCl) at concentration 0.05 mg/ml in DMF

5.14. Nonlinear absorption coefficient β_{eff} versus on-axis input intensity I_0 of P(A-co-O-An), (b) P(A-co-O-T) and (c) P(A-co-Py) (H$_2$SO$_4$) at concentration 0.05 mg/ml in DMF

5.15. Nonlinear absorption coefficient β_{eff} versus on-axis input intensity I_0 of P(A-co-O-An), (b) P(A-co-O-T) and (c) P(A-co-Py) (HCl) at concentration 0.05 mg/ml in DMF

5.16. Pure nonlinear refraction z-scan traces of (a) P(A-co-O-An), (b) P(A-co-O-T) and (c) P(A-co-Py) (H$_2$SO$_4$) at concentration 0.05 mg/ml in DMF

5.17. Pure nonlinear refraction z-scan traces of (a) P(A-co-O-An), (b) P(A-co-O-T) and (c) P(A-co-Py) (HCl) at 0.05 mg/ml
concentrations in DMF

5.18. UV-VIS absorption spectra of 0.05 mg/ml concentrations of PANI, P(A-co-O-An), P(A-co-O-T) and P(A-co-Py) (H$_2$SO$_4$) in DMF

5.19. UV-VIS absorption spectra of 0.05 mg/ml concentrations of PANI, P(A-co-O-An), P(A-co-O-T) and P(A-co-Py) (HCl) in DMF

5.20. Optical limiting and clamping values of P(A-co-O-T) (H$_2$SO$_4$ and HCl) at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.21. Optical limiting and clamping values of P(A-co-O-An) (H$_2$SO$_4$ and HCl) at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.22. Optical limiting and clamping values of P(A-co-Py) (H$_2$SO$_4$ and HCl) at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.23. Self-diffraction ring patterns of copolymers (i)-(iv) P(A-co-O-An), (ii)-(v) P(A-co-O-T) and (iii)-(vi) P(A-co-Py) (H$_2$SO$_4$ and HCl) at concentrations (a) 0.05, (b) 1, (c) 2, (d) 4 and (e) 8 mg/ml in DMF

5.24. Laser beam spot size variation of (i)-(iv) P(A-co-O-An) (H$_2$SO$_4$ and HCl), (ii)-(v) P(A-co-O-T) (H$_2$SO$_4$ and HCl) and (iii)-(vi) P(A-co-Py) (H$_2$SO$_4$ and HCl) at far from focus, (b) pre-focus transmittance maximum, (c) post-focus transmittance minimum and (d) away from focus