INTRODUCTION
The iminodibenzyls or dibenzazepins are a class of compounds with novel physical chemical and biological properties. They can undergo a number of reactions, like substitution, halogenation, metalation and rearrangement and many other reactions leading to varied and many products which have found their application in the alleviation of human sufferings as well as in industry and research. This novelty of character is conferred upon them by the uniqueness of their basic structure; an azepine ring holding two benzene rings. In addition to the reactive nature of benzene, the azepine moiety also possess an equally reactive character. 

The range of products obtained from the dibenzazepines have found a large number of applications in human ailments. The dibenzazepine molecule itself has got saline and diuretic effects, its N-ethyl substituted derivative is known to possess antiarrhythmic activity. Some compounds are known to possess antiulcer, anti-inflammatory, antianxiety and other effects on the human system.

The dibenzazepins have got their major application in the treatment of human depression. They have been in clinical use for more than a decade or so, and hundreds of dibenzazepine derivative have been prepared and tested for their antidepressant activity and some have been in clinical use. The clinical success of these compounds in the treatment of depression generated great interest in structurally similar compounds resulting in the synthesis of dibenzoxxepines, dibenzothiepins, dibenzoxxazepines etc. and similar compounds, forming the tricyclic antidepressant group which are the major drugs used for the treatment of human
depression. Despite their efficacy they are implicated for their serious side and toxic effects, among them are their anticholinergic and cardiotoxic effects. Efforts to get rid of these serious effects by molecular manipulation in the drug molecule have resulted in the development of completely new and structurally different (unrelated) class of antidepressant drugs, sometimes known as the second generation or atypical antidepressant drugs consisting of both bicyclic as well as tetracyclic and other type of compounds as the classical tricyclic structure could not yield a better drug.

Depression is quite prevalent illness in today's world. With the advancement of science and technology and growing industrialization the incidence of depression is on the increase. It has been reported that seventeen out of every hundred people in India suffer from depression at one time or the other and its treatment is quite a costly affair.

Though much work has been done to develop a more potent antidepressant drug with little or no toxicity, no absolutely safe drug is yet available. One of the major risks in antidepressant medication, the cardiotoxicity of these drugs is still a serious and controversial problem (the present study is aimed to study and establish the problem of cardiotoxicity on a biochemical basis. Attempts have also been made to develop a more potent and less toxic antidepressant drug).

The present study is aimed to develop a more effective and less toxic antidepressant drug and to study the problem of antidepressant cardiotoxicity on a biochemical basis.