NOMENCLATURE

L length of brick
B width of brick
D thickness of brick
B_1 least lateral dimension of masonry prism
B_2 other lateral dimension of masonry prism
C_f correction factor
h height of masonry prism
r minimum radius of gyration
h/r slenderness ratio
r' sum of ratio of mortar mix
τ shear strength of brick masonry
σ compressive stress
σ_b compressive strength of brick
σ_m compressive strength of mortar
σ_{bm} compressive strength of brick masonry
ε compressive strain
a, b model parameters
α, β constants
K coefficient which depends on layout of bricks and joints
K_s spring constant
K_c coefficient for compressive strength of brick masonry
K_{ss} coefficient for shear strength of brick masonry
K_r coefficient for radius of gyration
K_1, K_2 coefficients which depend on the type of mortar
s_b: standard deviation for the strength of brick
s_m: standard deviation for the strength of mortar
s_{bm}: standard deviation for the strength of brick masonry
δ_b: coefficient of variation for the strength of brick
δ_m: coefficient of variation for the strength of mortar
δ_{bm}: coefficient of variation for the strength of brick masonry
δ_s: shape factor to account for the shape and size of brick
δ_{mf}: moisture factor to account for the moisture content of brick masonry
P: horizontal force applied at the top of wall to give unit lateral displacement
U: strain energy
M_x: bending moment at a section distant x from base
M: fixed end moment
F: shear force
V: support reaction
q: shear stress intensity at a section
z: width of the fibre at a distance y from neutral axis
y: distance of fibre under consideration from neutral axis
y_t: distance of the fibre in tension zone under consideration from neutral axis
y_c: distance of the fibre in compression zone under consideration from neutral axis
A_y: moment of area of the portion which is between the fibre under consideration and the extreme of fibre
L_w: length of wall
H: height of wall
t_w: thickness of wall
L_1: width of door
H_1: height of door
L_2: width of ventilator
H_2: height of ventilator
L_3: width of window
H_3 \hspace{0.5cm} \text{height of window} \\
I \hspace{0.5cm} \text{second moment of area of wall about neutral axis} \\
I_1 \hspace{0.5cm} \text{second moment of area of wall for the portion having door opening about neutral axis} \\
I_2 \hspace{0.5cm} \text{second moment of area of wall for the portion having ventilator opening about neutral axis} \\
I_3 \hspace{0.5cm} \text{second moment of area of wall for the solid portion without opening about neutral axis} \\
I_4 \hspace{0.5cm} \text{second moment of area of wall for the portion having window opening about neutral axis} \\
E \hspace{0.5cm} \text{modulus of elasticity of brick masonry} \\
G \hspace{0.5cm} \text{shear modulus of brick masonry} \\
M_t \hspace{0.5cm} \text{mass lumped at roof level} \\
M_b \hspace{0.5cm} \text{mass lumped at base} \\
M_T \hspace{0.5cm} \text{sum of top and bottom mass i.e. total mass} \\
\ddot{X}_t, \ddot{Z}_t \hspace{0.5cm} \text{absolute and relative accelerations of the top mass respectively} \\
\ddot{X}_b, \ddot{Z}_b \hspace{0.5cm} \text{absolute and relative accelerations of bottom mass respectively} \\
$\ddot{y}(t)$ \hspace{0.5cm} \text{ground acceleration at any instant of time, } t \\
Z_b, Z_t \hspace{0.5cm} \text{lateral relative displacements of bottom and top masses respectively} \\
\dot{Z}_t, \dot{Z}_b \hspace{0.5cm} \text{relative velocities of bottom and top masses respectively} \\
S_f \hspace{0.5cm} \text{force to cause sliding} \\
g \hspace{0.5cm} \text{acceleration due to gravity} \\
C_s \hspace{0.5cm} \text{coefficient of viscous damper} \\
\omega \hspace{0.5cm} \text{natural circular frequency of the system} \\
\xi \hspace{0.5cm} \text{fraction of critical damping} \\
\mu \hspace{0.5cm} \text{coefficient of friction} \\
\theta \hspace{0.5cm} \text{mass ratio} = \frac{M_t}{M_b}$