TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 General
1.2 Classification of fast ion conductors
 1.2.1 Crystalline and polycrystalline fast ion conductors
 1.2.2 Fast ion conducting glasses
 1.2.3 Fast ion conducting polymers
1.3 Review of fast ion conductors
1.4 Review of FIC glasses
1.5 Review of NASIGLAS compounds
1.6 Ion conduction mechanisms in glass
 1.6.1 Anderson and Stuart model
 1.6.2 The weak electrolyte model
 1.6.3 Defect model
 1.6.4 Random network model
1.7 Present work

CHAPTER II EXPERIMENTAL TECHNIQUES

2.1 Preparation of glasses
2.2 Physical Characterization
 2.2.1 X-Ray Diffraction
 2.2.2 Density Measurement
 2.2.3 Thermal Analysis
 2.3.4 Fourier Transform Infrared Spectroscopy Studies
2.3 Electrical properties
 2.3.1 Impedance spectroscopy
 2.3.2 AC response and conductivity
 2.3.3 Electrical measurements
CHAPTER III IONIC CONDUCTIVITY IN TITANIUM AND NIOBIUM BASED NASICON GLASSES

3.1 Preview 45
3.2 Results and discussion 47
 3.2.1 Synthesis and Characterization 47
 3.2.2 Impedance spectroscopy studies 48
 3.2.3 Dc conductivity analysis 56
 3.2.4 Ac conductivity analysis 60
 3.2.5 Electrical modulus behavior 70
 3.2.6 Scaling 76
 3.2.6 (a) Ac conductivity scaling 79
 3.2.6 (b) Electric modulus scaling 83

Chapter IV MIXED ALKALI EFFECT IN NASICON GLASSES

4.1 Introduction 88
4.2 Synthesis and Characterization 90
4.3 Impedance spectroscopy and dc conductivity analysis 91
4.4 Ac conductivity analysis 96
4.5 Electric modulus 101
4.6 Scaling 103
 4.6.1 Ac conductivity scaling 104
 4.6.2 Electric modulus scaling 108

Chapter V INVESTIGATIONS ON DIVALENT ION SUBSTITUTED NASICON GLASSES

5. 1 Addition of divalent ions in NASICON glasses 113
 5.1.1 Introduction 113
 5.1.2 Synthesis and Characterization 114
 5.1.3 Impedance spectroscopic studies 114
 5.1.4 Ac conductivity studies 116
 5.1.5 Dielectric properties 123
5.1.5(a) Permittivity studies 123
5.1.5 (b) Electric modulus analysis 126
5.1.6 Scaling studies in ac conductivity and electrical modulus 130
5.2 Effects of ZnO on electrical conductivity of NASICON type glasses 132
 5.2.1 Introduction 132
 5.2.2 Preparation and Characterization 133
 5.2.3 Impedance spectroscopic studies 134
 5.2.4 Composition dependence of dc conductivity 136
 5.2.5 Ac electric response studies 139
 5.2.6 Ac conductivity scaling studies 142

Chapter VI SUMMARY 149