### CHAPTER III

**SUMMARY OF THE GEOLOGY OF THE NORTHEASTERN PART OF KARNATAKA NUCLEUS AND ADJOINING SCHIST BELTS WITH SPECIAL REFERENCE TO KUSHTAGI SCHIST BELT**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>General Statement</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Distribution of Rock Suites</td>
<td>43</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Peninsular Gneiss</td>
<td>44</td>
</tr>
<tr>
<td>3.2.2</td>
<td>High Grade Mafic Schists</td>
<td>44</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Low Grade Mafic Schists</td>
<td>45</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Intrusive Granites and Granodiorites</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Structures</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Age of the Schist Belts</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>Geology of the Schist Belts</td>
<td>50</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Gurgunta/Parampur Schist Belt</td>
<td>50</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Hutti-Maski Schist Belt</td>
<td>52</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Sandur Schist Belt</td>
<td>53</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Magalur Schist Belt</td>
<td>55</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Pennar-Hagari Schist Belt</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Kushtagi Schist Belt</td>
<td>56</td>
</tr>
</tbody>
</table>
3.6.1 Distribution of Rock Types in Kushtagi Schist Belt

3.6.1.1 Metabasalt
3.6.1.2 Acid Volcanics
3.6.1.3 Metasediments
3.6.1.4 Banded Iron Formation
3.6.1.5 Granites
3.6.2 Structure
3.6.3 Metamorphism

CHAPTER IV
DISTRIBUTION OF BIF IN KARNATAKA NUCLEUS

4.1 Distribution of BIF in Indian Context
4.2 Distribution of BIF in KN
4.3 Cyclicity of BIF deposition in KN
4.4 Restriction of BIF in Archaean Schist Belts

CHAPTER V
PROBLEMS AND QUESTIONS RELATED TO BIF: STATUS OF INFORMATION AVAILABLE

5.1 The Debate
5.1.1 Source of FeO and SiO₂
5.1.2 Source of O₂
5.1.3 Banding in BIF
5.2 The Present Status

CHAPTER VI
MINERALOGY AND PETROLOGY OF BANDED IRON FORMATION

6.1 General Statement
6.2 Cherty Banded Iron Formation
6.2.1 Hematite 96
6.2.2 Chert 96
6.2.3 Muscovite 96
6.3 Shaly Banded Iron Formation 100

CHAPTER VII
MINERALOGY AND PETROGRAPHY OF ASSOCIATED VOLCANICS
7.1 Introduction 101
7.2 Textures and Microstructures 102
7.3 Mineralogy of Volcanics 102
7.3.1 Actinolite 105
7.3.2 Albite 105
7.3.3 Chlorite 110
7.3.4 Muscovite 111
7.3.5 Epidote 111
7.3.6 Sphene 111
7.3.7 Magnetite and Ilmenite 111
7.4 Metamorphism 113

CHAPTER VIII
ANALYTICAL TECHNIQUES
8.1 Sampling and Sample Selection 114
8.2 Sample Preparation and Analytical Techniques 114
8.3 Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) 115
8.3.1 Sample Preparation 115
8.3.2 Instrumentation 116
8.3.3 Operating Conditions 117
8.4 X-Ray Fluorescence 117
8.4.1 Sample Preparation
8.4.2 Instrumentation
8.4.3 Operating Conditions
8.5 Electron Probe Micro Analysis
8.5.1 Slide Preparation
8.5.2 Instrumentation
8.5.3 Operating Conditions
8.6 X-Ray Diffraction Analysis (XRD)
8.7 Stable Isotope Mass Spectrometry

CHAPTER IX
GEOCHEMISTRY OF BIF
9.1 General Statement
9.2 Behaviour of Major Elements
9.3 Trace Element Geochemistry
9.4 Rare Earth Elements
9.5 Oxygen Isotopes of Kushtagi BIF

CHAPTER X
GEOCHEMISTRY OF ASSOCIATED VOLCANICS
10.1 General Statement
10.2 Major Element Geochemistry
10.3 Trace Element Geochemistry
10.3.1 Discriminant Diagrams
10.4 REE Geochemistry

CHAPTER XI
DISCUSSION AND SYNTHESIS
11.1 Source of FeO and SiO₂
11.2 Source of $O_2$ 168
11.3 Formation of Banding in BIF 169
11.4 Palaeoenvironment of deposition of BIF 171
11.5 Archaean Plate Motions and Evolution of Greenstone Belts 174
11.6 Tectonic Settings of Late Archaean Greenstone Belts 176
11.7 Evolution of Late Archaean Greenstone Belts of Dharwar Craton: Constraints from Metavolcanics 178
11.8 Proposed Model for the Genesis of BIF and Evolution of Kushtagi Schist Belt 180

CHAPTER XII

SUMMARY AND CONCLUSIONS 192

REFERENCES 202