REFERENCES

sea level changes, Continental area, oceanic heat loss and
the area age distribution of the ocean basins. Tectonics, V.
3, pp. 709-722.

revisited. 1. Heat flow, spreading rate and their age of
subducting lithosphere and their effects on the origin and

Ahn, J.H. and Buseck, P.R. (1990) Hematite nanospheres of pos-
sible colloidal origin from a Precambrian banded iron

Alibert, C. and McCulloch, M.T. (1993) Rare earth element and
neodymium isotope composition of the banded iron formation
and associated shales from Hamersley, Western Australia.

Allaart, J.H. (1976) The pre-3760 m.y. old supracrustal rocks of
the Isua area, central west Greenland, and the associated oc-
currence of quartz - banded ironstone. In : B.F. Windley
(Ed.), The Early History of the Earth. John Wiley and Sons,
New York, N.J., pp. 177-190.

low-to high-grade transition in the Krishnagiri-Dharmapuri
area, Tamil Nadu, Southern India. In : S.M. Naqvi and J.J.W.
Rogers (Eds.), Precambrian of South India, Geol. Soc. of
India, Mem. 4, pp. 450-461.

Anantha Iyer, G.V. and Vasudev, V.N. (1979) Geochemistry of the
Archaean metavolcanic rocks of Kolar and Hutti gold fields,
419-432.

Anantha Iyer, G.V., Vasudev, V.N. and Jayaram, S. (1980) Rare
earth element geochemistry of metabasalts from Kolar and
Hutti gold-bearing volcanic belts, Karnataka craton, India.

Ananthanarayana, R., Duraisamy, K. and Khan, R. (1989) Geology of
parts of Yelbarga, Khustagi, Koppal, Gangavati and Lingsugur
taluks of Raichur district and parts of Ron taluk of Dharwar
district, Karnataka. Rec. Geol. Surv. India, V. 122, Pt. 5,
pp. 87-94.

Rev. Earth Planet. Sci., V. 3, pp. 31-53.

202


211


Holland, H.D. (1973) The oceans, a possible source of iron in iron formations. Econ. Geol., V. 68, pp. 1169-1172.


Klein, C. (1973) Changes in mineral assemblages with metamorphism of some banded Precambrian iron formations. Econ. Geol., V. 68, pp. 1075-1088.


Klein, C. and Beukes, N.J. (1989) Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol., V. 84, pp. 1733-1774.


LaBerge, G.L. (1973) Possible biological origin of Precambrian iron-formation. Econ. Geol., V. 68, pp. 1098-1109.


Manikyamba, C. and Naqvi, S.M. (1993a) Geochemistry of Fe-Mn formations of Archaean Sandur schist belt, India -- Mixing of clastic and chemical processes at a shallow shelf. (communicated)

Manikyamba, C. and Naqvi, S.M. (1993b) Geochemistry of volcanic rocks from Sandur schist belt and its significance in greenstone belt tectonics (under preparation).


Naqvi, S.M. and 13 others (1983) Geochemistry of gneisses from Hassan district and adjoining areas, Karnataka, India. In : S.M. Naqvi and J.J.W. Rogers (Eds.), Precambrian of South India, Geol. Soc. India, Mem., pp. 401-413.


Radhakrishna, B.P. (1987) Introduction. In Purana Basins of Peninsular India (Middle to Late Proterozoic). Geol. Soc. of India, Mem. 6, I-XV.


Rama Rao, B. (1940) Remarks on the mode of occurrence and origin of the Peninsular Gneiss of Mysore. Records Mysore Geology Department, V. 38, pp. 52-72.


230


