<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(A) Geological map of the Bastar craton, Central Indian Shield showing locations of different Archean - Paleoproterozoic and Neoproterozoic Sedimentary basins (Ramakrishnan, 1990). (B) Inset: Simplified Geological map of India showing major Archean cratons including Bastar craton (Radhakrishnan and Naqvi, 1986).</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Field photographs showing highly deformed Sakoli supracrustals near Sakoli (A) pelite (B) quartzite.</td>
<td>27</td>
</tr>
<tr>
<td>3.</td>
<td>Field photographs showing highly deformed Sausar supracrustals near Sausar (A) pelite (B) quartzite.</td>
<td>33</td>
</tr>
<tr>
<td>4.</td>
<td>Field photographs of the Chhattisgarh basin showing (A) contact between conglomerate/sandstone of the Lohardih Formation of the Chandarpur Group and Archean gneiss near Dhamtari and (B) cross-bedded sandstone of the Chopardih Formation, Chandarpur Group near Raipur.</td>
<td>38</td>
</tr>
<tr>
<td>5.</td>
<td>Field photographs showing horizontally bedded Tiratgarh sandstone from the Indravati basin near (A) Tiratgarh waterfalls (B) Chitrakot water falls.</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>(A) Geological map of the Bastar craton, Central Indian Shield (Ramakrishnan, 1990), showing locations of different Paleoproterozoic and Neoproterozoic sedimentary basins from which samples have been taken (B) Inset: Simplified Geological map of India showing major Archean cratons including the Bastar craton (Radhakrishnan and Naqvi, 1986). Numbers refer to sample locations.</td>
<td>44</td>
</tr>
<tr>
<td>7.</td>
<td>QFR plot for the classification of sandstone samples from the Chandarpur Group of the Chhattisgarh basin and the Tiratgar Formation of the Indravati basin (classification after Folk, 1980).</td>
<td>49</td>
</tr>
<tr>
<td>8.</td>
<td>Photomicrographs of sandstones of the Chandarpur Group, Chhattisgarh basin showing different types of mineral grains present. Qm - monocrystalline quartz. S - silica overgrowth. C - calcite cement. (A) Lohardih sandstone showing multicycle quartz grain floating in calcite cement and (B) Lohardih sandstone showing presence of well rounded and angular quartz grains floating in calcite cement.</td>
<td>52</td>
</tr>
</tbody>
</table>
9. Photomicrographs of sandstones of the Chandarpur Group, Chhattisgarh basin showing different types of mineral grains present. Qm - monocrystalline quartz, K - K-feldspar, Glt - glauconite, C - calcite cement. (A) Lohardih sandstone showing microcline replaced by calcite along twinning planes and (B) Chopardih sandstone showing presence of glauconite with cracks.

10. Photomicrographs of sandstones of the Chandarpur Group, Chhattisgarh basin showing different types of mineral grains present. Qm - monocrystalline quartz, S - silica overgrowth. (A) and (B) Kansapathar sandstone showing advance stage of silica overgrowth.

11. Photomicrographs of sandstones of the Tiratgarh Formation, Indravati basin showing different types of mineral grains present. Qm - monocrystalline quartz, Qp - polycrystalline quartz and C - calcite cement, (A) Tiratgarh sandstone showing monocrystalline quartz grains cemented by calcite and (B) Tiratgarh sandstone showing polycrystalline quartz grain with semicomposite crystals with sutured contacts.

12. Photomicrographs of sandstones of the Tiratgarh Formation, Indravati basin showing different types of mineral grains present. Qp - polycrystalline quartz, Lf - lithic fragment (A) Tiratgarh sandstone showing polycrystalline quartz grain ,with highly stretched semicomposite crystals and (B) Tiratgarh sandstone showing metamorphic lithic fragments (schist fragments).

13. Major oxides (wt. %) vs. SiO₂ (wt. %) for the non-calcareous shales and the calcareous shales of the Neoproterozoic Chhattisgarh and Indravati basins and the pelites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

14. Major oxides (wt. %) vs. Al₂O₃ (wt. %) for the non-calcareous and calcareous shales of the Neoproterozoic Chhattisgarh and Indravati basins and the pelites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

15. Major oxides (wt. %) vs. K₂O (wt. %) for the non-calcareous shales and calcareous shales of the Neoproterozoic Chhattisgarh and Indravati basins and the pelites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.
16. Plot of transition elements vs. \(\text{Al}_2\text{O}_3 \) and \(\text{K}_2\text{O} \) for the non-calcareous shales and calcareous shales of the Neoproterozoic Chhattisgarh and Indravati basins and pelites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

17. Plot of large ion lithophile elements (LILE) vs. \(\text{Al}_2\text{O}_3 \) and \(\text{K}_2\text{O} \) for the non-calcareous shales and calcareous shales of the Neoproterozoic Chhattisgarh and Indravati basins and pelites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

18. Plot of high field strength elements (HFSE) vs. \(\text{Al}_2\text{O}_3 \) and \(\text{K}_2\text{O} \) for the non-calcareous shales and calcareous shales of the Neoproterozoic Chhattisgarh and Indravati basins and pelites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

19. Plot of REE vs. \(\text{Al}_2\text{O}_3 \) and \(\text{K}_2\text{O} \) and REE vs. \(\text{Y}, \text{Th} \) and \(\text{Zr} \) for the non-calcareous and calcareous shales of the Neoproterozoic Chhattisgarh and Indravati basins of the Bastar craton.

20. Chondrite-normalized REE patterns for the non-calcareous and calcareous shales of the Neoproterozoic Chhattisgarh and Indravati basins, and a pelite sample of the Paleoproterozoic Sakoli basin of the Bastar craton.

21. Geochemical classification of sandstones of the Chandarpur Group and the Tiratgarh Formation using \(\log (\text{SiO}_2/\text{Al}_2\text{O}_3) \) vs. \(\log (\text{Na}_2\text{O}/\text{K}_2\text{O}) \) (Pettijohn et al., 1972).

22. Geochemical classification of sandstones of the Chandarpur Group and the Tiratgarh Formation using \(\log (\text{SiO}_2/\text{Al}_2\text{O}_3) \) vs. \(\log (\text{Fe}_2\text{O}_3/\text{K}_2\text{O}) \) (Heron, 1988).

23. Major oxides (wt. %) vs. \(\text{SiO}_2 \) (wt. %) plots for the sandstones of the Neoproterozoic Chhattisgarh and Indravati basins and quartzites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

24. Major oxides (wt. %) vs. \(\text{Al}_2\text{O}_3 \) (wt. %) plots for sandstones of the Neoproterozoic Chhattisgarh and Indravati basins and quartzites of Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

25. Major oxides (wt. %) vs. \(\text{K}_2\text{O} \) (wt. %) plots for sandstones of the Neoproterozoic Chhattisgarh and Indravati basins and quartzites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.
26. Plots of transition elements vs. Al\textsubscript{2}O\textsubscript{3} and K\textsubscript{2}O for the sandstones of the Neoproterozoic Chhattisgarh and Indravati basins and quartzites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

27. Plots of large ion lithophile elements (LILE) vs. Al\textsubscript{2}O\textsubscript{3} and K\textsubscript{2}O for sandstones of the Neoproterozoic Chhattisgarh and Indravati basins and quartzites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

28. Plots of high field strength elements (HFSE) vs. Al\textsubscript{2}O\textsubscript{3} and K\textsubscript{2}O for sandstones of the Neoproterozoic Chhattisgarh and Indravati basins and the quartzites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

29. Chondrite-normalized REE patterns for sandstones of the Neoproterozoic Chhattisgarh and Indravati basins and quartzites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

30. Plots of REE vs. Al\textsubscript{2}O\textsubscript{3} and K\textsubscript{2}O and REE vs. Y, Th and Zr for the sandstones of Neoproterozoic Chhattisgarh and Indravati basins and the quartzites of the Paleoproterozoic Sakoli and Sausar basins of the Bastar craton.

31. QtFL discriminant diagram after Dickinson and Suczek (1979) of sandstone samples of the Chandarpur Group of the Chhattisgarh basin and the Tiratgarh Formation of the Indravati basin.

32. QmFL\textsubscript{t} discriminant diagram after Dickinson and Suczek (1979) of sandstone samples of the Chandarpur Group of the Chhattisgarh basin and the Tiratgarh Formation of the Indravati basin.

33. QmPK discriminant diagram after Dickinson and Suczek (1979) of sandstone samples of the Chandarpur Group of the Chhattisgarh basin and the Tiratgarh Formation of the Indravati basin.

34. K\textsubscript{2}O/Na\textsubscript{2}O - Si\textsubscript{2}O\textsubscript{3} diagram (Roser and Korsch, 1986) showing the distribution of the Paleoproterozoic pelites and quartzites and the Neoproterozoic non-calcareous shales and sandstones of the Bastar craton. PM, passive margin; ACM, active continental margin; ARC, arc.
35. Tectonic discrimination diagram after Maynard et al. (1982) for the Paleoproterozoic pelites and quartzites, and the Neoproterozoic non-calcareous shales, calcareous shales and sandstones of the Bastar craton. PM - passive margin; ACM - active continental margin; A1 - arc, basaltic and andesitic detritus; A2 - evolved arc setting, felsic plutonic detritus.

37. \(\text{Al}_2\text{O}_3 - (\text{CaO}^* + \text{Na}_2\text{O}) - \text{K}_2\text{O} \) ternary diagram, (Nesbitt and Young, 1982), where \(\text{CaO}^* = \text{CaO} \) in silicate phases showing the plots of the Paleoproterozoic pelites and quartzites, and Neoproterozoic non-calcareous shales and sandstones of the Bastar craton. Average compositions of different rock types of Bastar craton: granite and gneiss of Bastar craton from Mondal et al. (2006), mafic volcanic rocks from Srivastava et al. (2004). Paleoproterozoic pelites of Kaapvaal craton from Wronkiewicz and Condie (1990) have also been plotted for comparison. Numbers 1-5 denote compositional trends of initial weathering profiles of different rocks: 1-gabbro; 2-tonalite; 3-diorite; 4-granodiorite; 5-granite.

38. \(\text{K}_2\text{O} - \text{Fe}_2\text{O}_3 \text{t} - \text{Al}_2\text{O}_3 \) triangular plot (Wronkiewicz and Condie, 1987) of the Paleoproterozoic pelites and quartzites, and the Neoproterozoic non-calcareous shales, calcareous shales and sandstones of the Bastar craton. NASC indicates North American Shale Composite (value from Gromet et al., 1984).

39. K vs. Rb diagram (plot adapted from Wronkiewicz and Condie, 1989) for the Paleoproterozoic pelites and quartzites, and the Neoproterozoic non-calcareous shales, calcareous shales and sandstones of the Bastar craton. \(\text{K}/\text{Rb} = 230 \) line represents the average crustal ratio. NASC indicates North American Shale Composite (value from Gromet et al., 1984).

40. NASC (North American Shale Composite) normalized average major and trace element composition of the Paleoproterozoic pelites and quartzites, and the Neoproterozoic sandstones and shales of the Bastar craton. Paleoproterozoic Kaapvaal pelites of the Kaapvaal craton (Wronkiewicz and Condie, 1990) are also shown for comparison. NASC values from Gromet et al. (1984).
41. Plots of key elemental ratios like Eu/Eu*, Th/Sc, La/Sc, Th/Ni, Th/Cr, La/Ni and La/Cr vs. (a) SiO₂ and (b) CaO for the Neoproterozoic sandstones and calcareous shales respectively.

42. UCC (Upper Continental Crust) normalised key elemental ratios of the Paleoproterozoic quartzites and a pelite sample and the Neoproterozoic non-calcareous shales, calcareous shales and sandstones of the Bastar craton.

43. Distribution of Ni and Cr in the Paleoproterozoic pelites and quartzites, and in the Neoproterozoic sandstones and shales (calcareous and non-calcareous) of the Bastar craton. Different types of rocks are also shown for comparison. Fields after Condie (1993). Data for the granite and gneiss of the Bastar craton from Mondal et al. (2006), mafic volcanic rocks of the Bastar craton from Srivastava et al. (2004) and the Paleoproterozoic pelites of the Kaapvaal craton from Wronkiewicz and Condie (1990).

44. Th/Sc vs. Sc distributions in the Paleoproterozoic pelites and quartzites, and the Neoproterozoic shales (calcareous and non-calcareous) and sandstones of the Bastar craton. Data for granite and gneiss of Bastar craton from Mondal et al. (2006), Kaapvaal pelite from Wronkiewicz and Condie (1990).

45. Chondrite normalized REE patterns of the Paleoproterozoic quartzites and pelite, and the Neoproterozoic non-calcareous, calcareous shales and sandstones of the Bastar craton. Chondrite normalized REE patterns of the granite, gneiss and mafic volcanic rocks of the Bastar craton have been shown for comparison. Data for the granite and gneiss of the Bastar craton from Mondal et al. (2006), mafic volcanic rocks from Srivastava et al. (2004). Chondrite normalization values from Sun and McDonough (1989).